System-Level Design Space Exploration for Heterogeneous Parallel Dedicated Systems

Dott. Ric. Ing. Luigi Pomante
luigi.pomante@univaq.it

Università degli Studi dell’Aquila
Center of Excellence DEWS
ITALY
Overview

• Introduction
• System Specification
• Target Architecture
• Design Space Exploration
Introduction
Introduction

• Electronic digital systems based on heterogeneous parallel architectures have been recently exploited for a wide range of application domains
 – They often include a combination of several heterogeneous single/multi-core processors, memories, and a set of interconnections among them

• Moreover, such systems are often dedicated systems
 – Digital electronic systems with application-specific HW/SW architecture

• When dedicated systems are also heterogeneous parallel ones they are so complex that the HW/SW co-design methodology plays a major role in determining the success of a product
 – Electronic Design Automation (Electronic System Level)
Diagram of the design flow for system-level and algorithm-level analysis.

System-level Flow
- Specification
- Functional Simulation
- Co-Analysis Co-Estimation
- Design Space Exploration
 - HW/SW Partitioning and Architecture Definition
 - Timing Co-Simulation
- Workload & Bandwidth Estimation
- Load & Bandwidth Constraints
- Profiling
- Communication
- Concurrency

Legend:
- Flow steps
- Designer Interaction
- Exchanged Data

Algorithm-level Flow
- DHPS
Introduction

• The focus of this talk is on a Design Space Exploration (DSE) approach that, starting from the system specification and related requirements, would be able to automatically suggest to the designer
 – an HW/SW partitioning of the given system specification
 – an heterogeneous parallel architecture
 – a mapping of the partitioned entities onto the proposed architecture able to satisfy imposed requirements
System Specification
System Specification

• The entry point of the proposed co-design flow is the behavioral specification of the system functionalities
 – The system specification is based on CSP MoC (*Communicating Sequential Processes*) and described by means of an executable specification language (e.g. OCCAM, HandelC, **SystemC**, etc…)

• An internal model of representation is used to allow a proper tool-chain to make automatic analysis and transformations
 – *Procedure Interaction Graph (PING)*
 • It is a formalism that provides information about the relationships among procedures (communication, synchronization and concurrency issues)
 – It is based on the well-known *Procedural Call Graph*
System Specification

[Diagram showing a network of processes and channels labeled P1, P2, P3, P4, EN_IN1, and EN_OUT1.]
Target HW Architecture
Target HW Architecture

- The target HW architecture is an heterogeneous parallel one with shared and distributed memory
 - It is composed of proper interconnections of some instances of different basic elements called *Basic Block* that represent the minimal computation, storage and communication units in the system

PUi
- GPP, DSP: ϵ, L_{MAX}
- SPP: ϵ, $G_{eq_{MAX}}$, $C_{Cell_{MAX}}$ / LUT_{MAX}

LM
- KBD_{MAX}
- KBC_{MAX}

IIL
- IIL: BW_{MAX}, N_{MAX}

ECU
- EIL_{K}: BW_{MAX}, N_{min}, N_{MAX}, CC_{MAX}, ϵ
Target HW Architecture

- Given some instances of BBs and interconnecting them by means of some instances of EILs it is possible to define a feasible dedicated heterogeneous parallel architecture on which the system functionalities can be mapped to
 - Such an architecture is represented by means of a hierarchical architecture graph
Design Space Exploration
Design Space Exploration

1st Phase

- Annotated Specification (PING)
 - Partial Architecture
 Number and type of processors/cores
 - HW/SW Partitioning
 - Mapping

PAM1

2nd Phase

- BB Interaction Graph
 - Final Architecture
 Number and type of processors/cores
 Number and type of interconnection links
 Topology
 - HW/SW Partitioning
 - Mapping

PAM2
Design Space Exploration

- The input is a PING annotated by several metrics
 - load imposed by each procedure to a single GPP under a time-to-completion constraint: l
 - bandwidth needed to communicate with other procedures while fulfilling a time-to-completion constraint: b
 - size for HW/SW implementations: s (KBD and KBC bytes, and Geq/cells/LUT)
 - affinity of each procedure towards a set of processor classes (GPP, DSP and SPP): a
Design Space Exploration

• 1st phase
 – From Annotated PING to determine number/type of BB/PU trying to minimize a cost function by means of a genetic approach
 • Each individual represents a possible mapping/architecture item
Design Space Exploration

• 2nd phase
 – The starting point of the second phase is an internal model used to represent the partial system obtained at the end of the first phase
 • BB Interaction Graph (BING)
 – Such a model is used to determine number and type of EILs between BBs that minimizes a proper cost function by means of a genetic approach
Design Space Exploration

- **2\(^{nd}\) phase**
 - The approach is very similar to the 1\(^{st}\) phase but with different system-level metrics, individuals structure and cost function
 - Each individual of the population represents a possible interconnections/topology item
Design Space Exploration

• Starting from a CSP Specification, let’s follow the design flow…
Thanks!