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Abstract— In this paper a mesoscopic hybrid automaton is
introduced in order to obtain an human-behavior based vehicle
controller. A microscopic hybrid automaton model for longitu-
dinal vehicle control based on human psycho-physical behavior
is first presented. Advantages of using hybrid automaton are
that all possible driver behavior depending on next vehicle are
considered. Then a rule for changing time headway depending
on macroscopic quantities is used to describe importance of
interaction among all next vehicles and their impact on driver
performance. The resulting mesoscopic vehicle model has a set
of possible behaviors that contains more real-life situations than
the purely microscopic one.

I. INTRODUCTION

Nowadays traffic control is one of the most studied
problem in engineering. This is due to its high impact in
human life: progressing the knowledge and control over
traffic systems means to raise life quality [1]. The main
purpose of traffic control is to improve the traffic manage-
ment depending on a variety of different goals: congestion,
emissions and travel time reduction, safety increments etc....

Over the time a multitude of traffic control systems have
been generated (see [2], [3], [4], [5]). A classification can
be done between macroscopic and microscopic models: in
the first ones traffic is represented as a continuum flow and
its values are described by mean values variables (see [6],
[7]), while the other ones describe each single vehicle on
the road and their interaction (see [1]). Both models have
advantages but also drawbacks depending on their exclusive
aggregation type. In order to avoid drawbacks scientists are
now focusing on mesoscopic models, a new kind of models
which combine microscopic and macroscopic approaches
in which parameters of the microscopic model depend on
macroscopic quantities. Another classification distinguishes
centralized control strategies from decentralized ones: re-
spectively, there will be a single control strategy that has
been taken by a single controller, which knows everything, or
a set of controllers, each one with control strategy based on
its partial knowledge. Centralized control strategies require
an appropriate infrastructure, which is usually suitable, while
basis for decentralized ones depend on single agents connec-
tivity. Thanks to new telecommunication results, communi-
cation among vehicles is now possible without sophisticated
equipment installation (see [8], [9]).
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In this paper we focus on a decentralized mesoscopic
control approach. An hybrid system is chosen for repre-
senting vehicle dynamics because of its ability to include
in the same mathematical model various different human
behaviors. The vehicle is modeled as an agent controlled by
an hybrid automaton that represents the needed driver actions
for obtaining the desired dynamics, which will be influ-
enced by different conditions-dependent ways of proceeding.
Agents share information regarding their state among them.
Switching through different control strategies the driver can
achieve his or her task on the basis of the environmental
information.

Hybrid system allows us to consider the wide range of
different behavior a driver could have. We used two different
types of microscopic models: stymulus-response and psycho-
physical. The former models type describes vehicle continu-
ous dynamics depending on the stymulus (i.e. the continuous
dynamics) of the ahead vehicle [2]. The latter models type
uses thresholds for deciding which continuous dynamics the
vehicle will use [10].

In real life microscopic model parameters are related
to macroscopic quantities, such as traffic density. Being
variance a density-dependent function [11], a variance-driven
adaptation mechanism is adopted for changing thresholds
depending on the local mean speed value and local variance
to improve the overall systems performance. To quantify
controller performance improvements we compare cases
taking into account quantities such as safety distance, fuel
consumption and emission rate.

The paper is organized in 5 sections. In Section II the
microscopic hybrid automaton of a single vehicle will be
described, arguing that this mathematical model is the most
appropriate tool. Then in Section III a variance-driven time
headway mechanism will be introduced and used for the
hybrid automaton; by adding this mechanism, which depends
on macroscopic quantities, to the previously defined micro-
scopic automaton, the resulting hybrid automaton can be
defined mesoscopic. Section IV provides simulation results
about automaton behavior. Summary and conclusions are
outlined in Section V.

II. HYBRID MODEL OF MICROSCOPIC TRAFFIC MODEL

Microscopic models describe traffic flow dynamics in
terms of single vehicles. In this section, a microscopic traffic
model based on classical Car-Following literature models is
introduced. The considered situation concerns a single lane
road case. The leading car, called the ”leader”, is represented
by the number n, while the later ones, called ”followers” are
represented with numbers n+ 1, n+ 2,... (cf. Figure 1). For



Fig. 1. n is the leader vehicle and n + 1 the follower one. Ln is the
vehicle length (all vehicles are supposed to be identical) and dn, dn+1 are
the covered distances by vehicles n and n+ 1 respectively.

now, let us assume that each leader shares information about
its position and speed with its follower.

According to hybrid automaton definition given in [12],
the hybrid system will be the tuple

H = (Q,X, f, Init,Dom, E ,G,R) (1)

where:
• Q is a finite set of N discrete states;
• X ⊆ Rn is the continuous state space;
• f(·, ·) : Q×X → Rn is a vector field that associates to

each discrete state q ∈ Q the continuous time-invariant
dynamics

ẋ = fq(x, u), (2)

and the output map y = gq(x). Given an initial
condition x0 at time t0 and a control input u|tt0 : [t0, t],
we denote the solution at time t according to fq by

x(t) = xq(t, x0, u|tt0).

The solution of the above differential equation exists
and it is unique, provided that fq is Lipschitz continuous
with respect to its arguments;

• Init ⊆ Q × X is the set of initial discrete and
continuous conditions;

• Dom(·) : Q→ 2X is a domain;
• E ⊆ Q×Q is a set of edges;
• G : E → 2X is a map associating to each transition
e ∈ E a set G(e) called guard;

• R(·, ·) : E ×X → 2X is a reset map.

A. Continuous states

It is assumed that the vehicles motion is an accelerated-
decelerated one; we denote the traveled distance as d(t).
Representing space as x1 and speed as x2, the vector state
space will be[

ẋ1(t)
ẋ2(t)

]
=

[
x2(t)

u(t, x1(t), x2(t))− fr

]
(3)

where u(t, x1(t), x2(t)) is the acceleration/deceleration, that
will be shown depending on space and speed, and fr is the
friction term. Let us consider bounds for u(t, x1(t), x2(t))
such that umin ≤ u(t, x1(t), x2(t)) ≤ umax, with the maxi-
mum deceleration umin < 0 and the maximum acceleration
umax > 0.

Fig. 2. The different thresholds and regimes in Fritzsche car-following
model. There are two main areas; one is related to the so-called ”leader
phase” (Free-driving) where the vehicle does not take into account its ahead
vehicle, and the other one related to the ”follower phase” (Following I,
Following II, Closing in, Danger) where vehicle dynamic depends on its
ahead vehicle.

In the considered case there will be X = R2. We will
define ∆d(t) = dn(t)−dn+1(t) as the distance and ∆v(t) =
vn(t) − vn+1(t) as the speed difference between vehicle n
and n + 1 (see Figure 1). So the equations for ∆d(t) and
∆v(t) become ∆x1(t) = x1n

(t) − x1n+1
(t) and ∆x2(t) =

x2n
(t)−x2n+1

(t). In the following the time dependence will
be omitted for sake of simplicity.

B. Discrete states

For setting discrete states of the hybrid automaton the
psycho-physical Car-Following model by Fritzsche (see [10])
is used. The Fritzsche model accounts for human perception
in the definitions of the model regimes. In the model the
distance-relative velocity plane of the leader and follower
vehicles is considered. The plane is divided in different
regions; in each one of them, the driver will act differently.
The model represents in ∆v − ∆d (∆x2 − ∆x1) plane
two thresholds for perception of speed differences (PTN,
negative, and PTP, positive) and four thresholds for the
followers space headway to its leader (the risky distance
∆R, the safe distance ∆S, the desired distance ∆D and the
braking distance ∆B) (see Figure 2). The thresholds become

PTN = −kPTN · (∆x1 − sn)2 − fx (4)

PTP = kPTP · (∆x1 − sn)2 + fx (5)

∆R = sn + Trx2n
(6)

∆S = sn + Tsx2n+1
(7)

∆D = sn + Tdx2n+1
(8)

∆B = ∆R+
(∆x2)2

|bmin|+ a−n
(9)



Fig. 3. Automaton discrete states corresponding to different thresholds and
regimes in Fritzsche car-following model.

Fig. 4. The obtained hybrid automaton: discrete states colors are related
to Fritzsche’s model area divisions.

where kPTN , kPTP , fx, bmin, a−n are model parameters, sn
is the effective desired length from the ahead vehicle and
Tr, Ts, Td are time headways. We define an hybrid model
with 7 discrete states according to Fritzsche cars interaction
spaces definitions (see Figure 3)

Q = (q1, q2, q3, q4, q5, q6, q7) (10)

defined as follow:
1) In the ”Free driving” region the vehicle can run freely

because the leader vehicle is either too far away or
faster or both. The follower is ”free”, and he acts as a
his own ”leader”. There will be three possibilities of
acting, described by three distinguished discrete states:

a) q1: the driver is supposed to accelerate, because
his speed is less than the desired one.

fq1(X) =

[
x2n+1

α+
1 · (vdes − x2n+1

)− fr

]
(11)

b) q2: the driver does not make any action, because

the speed is more or less equal to the desired one.

fq2(X) =

[
x2n+1

−fr

]
(12)

c) q3: the driver is supposed to decelerate, because
his speed is higher than the desired one.

fq3(X) =

[
x2n+1

α−3 · (vdes − x2n+1)− fr

]
(13)

2) q4: in the ”Following II” region the driver has noticed
that he is closing in on the vehicle in front but the
space headway is too large, so he keeps accelerating
but with different parameters; this time acceleration
will depend on relative speed and distance, following
the model in [3].

fq4(X) =

[
x2n+1

α−4 · ∆x2

∆x1
x2n+1

− fr

]
(14)

3) q5: in the ”Following I” region speed difference and
distance are small, so the driver takes no conscious
action; there will be no acceleration or deceleration in
this discrete state.

fq5(X) =

[
x2n+1

−fr

]
(15)

4) q6: in the ”Closing in” region the speed difference
is large and the distance is not, so the driver has to
decelerate; he will do it depending on distance and
relative speed, according to the model in [13].

fq6(X) =

[
x2n+1

x2
2n
−x2

2n+1

2(∆x1+∆R+x2n ·∆t) − fr

]
(16)

5) q7: in the ”Danger” region the distance from the
leading vehicle is very small and the driver uses his
maximum deceleration.

fq7(X) =

[
x2n+1(t)
umin − fr

]
(17)

Here α+
1 , α−3 and α−4 are sensitivity parameters, vdes is the

desired speed the driver wants to achieve, ∆t is the time
instant (the simulation time).

C. Domains, edges and guard conditions

Discrete state domains come from the speed-position plane
using logic conditions and thresholds. Also edges set E can
be defined in the same way.

E = {(q1, q2), (q1, q4), (q1, q5), (q1, q6),

(q2, q1), (q2, q4), (q2, q5), (q2, q6),

(q3, q2), (q3, q5), (q3, q6), (q4, q1),

(q4, q5), (q4, q6), (q5, q1), (q5, q2),

(q5, q4), (q5, q6), (q5, q7), (q6, q1),

(q6, q2), (q6, q3), (q6, q4), (q6, q5)

(q6, q7), (q7, q5), (q7, q6)}

(18)



In general the domain of discrete state qi is

Dom(qi) = zi(x2n+1
, vdes,∆x1,∆x2, PTP,

PTN,∆R,∆D,∆S,∆B)
(19)

with i ∈ [1, 7], where zi is a function that maps X in
qi depending on its own position related to the defined
thresholds and its own speed related to the desired one (see
Figures 3 and 4).

Dom(q1) = {x ∈ <2 : (0 ≤ x2n+1
< vdes)∧

[((∆x2 > PTP ) ∧ (∆x1 > ∆S))∨
((∆x2 > PTN) ∧ (∆x1 > ∆D))]}

(20)

Dom(q2) = {x ∈ <2 : (vdes ≤ x2n+1
< vdes + ε)∧

[((∆x2 > PTP ) ∧ (∆x1 > ∆S))∨
((∆x2 > PTN) ∧ (∆x1 > ∆D))]}

(21)

Dom(q3) = {x ∈ <2 : (x2n+1
≥ vdes + ε)∧

[((∆x2 > PTP ) ∧ (∆x1 > ∆S))∨
((∆x2 > PTN) ∧ (∆x1 > ∆D))

(22)

Dom(q4) = {x ∈ <2 : (0 ≤ x2n+1
< vdes + ε)∧

(∆x2 ≤ PTN) ∧ (∆x1 > ∆D) ∧ (∆x1 ≥ ∆B)}
(23)

Dom(q5) = {x ∈ <2 : [(∆x2 > PTN) ∧ (∆x2 ≤ PTP )∧
(∆x1 ≤ ∆D) ∧ (∆x1 > ∆R)]∨

[(∆x2 > PTP ) ∧ (∆x1 ≤ ∆S) ∧ (∆x1 > ∆R)]}
(24)

Dom(q6) = {x ∈ <2 : (∆x1 > ∆R) ∧ (∆x2 ≤ PTN)∧
[(∆x1 < ∆B) ∨ (∆x1 < ∆D)]}

(25)

Dom(q7) = {x ∈ <2 : (∆x1 ≤ ∆R)} (26)

The same reasoning used for domains definition will be
adopted for guard conditions sets. Furthermore, we will set
them to be mutually exclusive:

G(qi, qj) = zij(x2n+1
, vdes,∆x1,∆x2,

PTP, PTN,∆R,∆D,∆S,∆B) ∀ (i, j) : eij ∈ E (27)

with i, j ∈ [1, 7], where zij is a map that associates the
set G(qi, qj) to the transition eij for every (i, j) such that
eij ∈ E .

G(q1, q2) = {x ∈ <2 : [(x2n+1
> vdes)∧

[((∆x2 > PTP ) ∧ (∆x1 > ∆S))∨
((∆x2 > PTN) ∧ (∆x1 > ∆D))]]}

(28)

G(q1, q4) = {x ∈ <2 : [(∆x1 > ∆D)

∧(∆x1 > ∆B) ∧ (∆x2 ≤ PTN)]}
(29)

G(q1, q5) = {x ∈ <2 : (∆x1 > ∆R) ∧ [((∆x2 < PTP )∧
(∆x1 ≤ ∆D) ∧ (∆x2 ≥ PTN))

∨((∆x1 < ∆S) ∧ (∆x2 > PTP ))]}
(30)

G(q1, q6) = {x ∈ <2 : (∆x1 > ∆R)∧
(∆x1 ≤ ∆B) ∧ (∆x2 ≤ PTN)}

(31)

G(q2, q1) = {x ∈ <2 : (x2n+1 < vdes)∧
[((∆x2 > PTP ) ∧ (∆x1 > ∆S))∨
((∆x2 > PTN) ∧ (∆x1 > ∆D))]}

(32)

G(q2, q3) = {x ∈ <2 : [(x2n+1 ≥ vdes + ε)∧
[((∆x2 > PTP ) ∧ (∆x1 > ∆S))∨
((∆x2 > PTN) ∧ (∆x1 > ∆D))]}

(33)

G(q2, q4) = {x ∈ <2 : [(∆x1 > ∆D)

∧(∆x1 > ∆B) ∧ (∆x2 ≤ PTN)]}
(34)

G(q2, q5) = {x ∈ <2 : (∆x1 > ∆R) ∧ [((∆x2 < PTP )∧
(∆x1 ≤ ∆D) ∧ (∆x2 ≥ PTN))

∨((∆x1 < ∆S) ∧ (∆x2 > PTP ))]}
(35)

G(q2, q6) = {x ∈ <2 : (∆x1 > ∆R)∧
(∆x1 ≤ ∆B) ∧ (∆x2 ≤ PTN)}

(36)

G(q3, q2) = {x ∈ <2 : [(x2n+1
< vdes + ε)∧

[((∆x2 > PTP ) ∧ (∆x1 > ∆S))∨
((∆x2 > PTN) ∧ (∆x1 > ∆D))]}

(37)

G(q3, q5) = {x ∈ <2 : (∆x1 > ∆R) ∧ [((∆x2 < PTP )∧
(∆x1 ≤ ∆D) ∧ (∆x2 ≥ PTN))

∨((∆x1 < ∆S) ∧ (∆x2 > PTP ))]}
(38)

G(q3, q6) = {x ∈ <2 : (∆x1 > ∆R) ∧ (∆x2 ≤ PTN)∧
[(∆x1 ≤ ∆B) ∨ (∆x1 < ∆D)]}

(39)

G(q4, q1) = {x ∈ <2 : (x2n+1
< vdes)∧

(∆x1 > ∆D) ∧ (∆x2 > PTN)}
(40)

G(q4, q5) = {x ∈ <2 : (((∆x1 = ∆D) ∧ (∆x2 = PTN)}
(41)

G(q4, q6) = {x ∈ <2 : (∆x1 > ∆R) ∧ (∆x2 < PTN)∧
((∆x1 ≤ ∆B) ∨ (∆x1 ≤ ∆D))]}

(42)



G(q5, q1) = {x ∈ <2 : (x2n+1 < vdes) ∧ [((∆x1 > ∆D)∧
(∆x2 > PTN) ∧ (∆x2 < PTP ))∨
((∆x1 > ∆S) ∧ (∆x2 ≥ PTP ))]}

(43)

G(q5, q2) = {x ∈ <2 : [(x2n+1
≥ vdes) ∧ [((∆x1 > ∆D)∧

(∆x2 > PTN) ∧ (∆x2 < PTP ))∨
((∆x1 > ∆S) ∧ (∆x2 ≥ PTP ))]}

(44)

G(q5, q4) = {x ∈ <2 : (∆x1 = ∆D) ∧ (∆x2 = PTN)}
(45)

G(q5, q6) = {x ∈ <2 : [(∆x1 < ∆D)∧
(∆x2 < PTN) ∧ (∆x1 > ∆R)]}

(46)

G(q5, q7) = {x ∈ <2 : (∆x1 ≤ ∆R)} (47)

G(q6, q1) = {x ∈ <2 : (x2n+1
< vdes)∧

(∆x1 > ∆D) ∧ (∆x2 > PTN)}
(48)

G(q6, q2) = {x ∈ <2 : [(vdes ≤ x2n+1
< vdes + ε)∧

(∆x1 > ∆D) ∧ (∆x2 > PTN)}
(49)

G(q6, q3) = {x ∈ <2 : [(x2n+1
≥ vdes + ε)∧

(∆x1 > ∆D) ∧ (∆x2 > PTN)}
(50)

G(q6, q4) = {x ∈ <2 : (∆x2 < PTN)∧
[(∆x1 > ∆B) ∧ [(∆x1 > ∆D)]}

(51)

G(q6, q5) = {x ∈ <2 : (∆x1 ≤ ∆D)∧
(∆x1 > ∆R) ∧ (∆x2 ≥ PTN)}

(52)

G(q6, q7) = {x ∈ <2 : (∆x1 ≤ ∆R)} (53)

G(q7, q5) = {x ∈ <2 : (∆x1 > ∆R) ∧ (∆x2 ≥ PTN)}
(54)

G(q7, q6) = {x ∈ <2 : (∆x1 > ∆R) ∧ (∆x2 < PTN)}
(55)

For a complete description see [14].

D. Initial and reset conditions

Initial states set is the entire speed-position plane consid-
ered: starting discrete state will depend on the position of the
n+ 1 vehicle and on its relative speed respect to n vehicle.

Init =

7⋃
i=1

{qi} × {Dom(qi)}. (56)

There will be no reset condition:

R(qi, qj , X) = X ∀(i, j) : eij ∈ E . (57)

E. Automaton properties

Theorem 1: The hybrid automaton H is non-blocking and
deterministic.

Proof: Let us define the set of reachable states Reach
of a general qi discrete state

Reachqi = {(qi, x̂) ∈ Q×X :

∃ (τ, q, x) : (q(τ ′N ), x(τ ′N )) = (qi, x̂)} (58)

and the set of states from which continuous evolution is not
possible from a generic qi discrete state

Transqi = {(qi, x̂) ∈ Q×X :

∀ ε > 0 ∃ t ∈ [0, ε) : (qi, x̂(t)) /∈ Dom(qi)}. (59)

For the set of all reachable states Reach results Init ⊆
Reach; since every point on the considered plane could be
an initial point, Reach will be as

Reach =

7⋃
i=1

{Reachqi} =

7⋃
i=1

{qi} × {Dom(qi)}. (60)

Also the set of states from which continuous evolution is
not possible from all discrete state (Trans) can be written
as function of introduced sets:

Trans =

7⋃
i=1

{qi} × {Transqi}. (61)

Then it is possible to define the intersection set between these
set as

Reach ∩ Trans =

7⋃
i=1

{qi} × {Reachqi ∩ Transqi} =

=

7⋃
i=1

{qi} × {RTqi} (62)

where

RTqi = Reachqi ∩ Transqi . (63)

According to Lemma 4.1 in [16] the defined set will be
used for constructing non-blocking conditions. In fact it is
sufficient to add an appropriate guard condition G(qi, qj) to
the qi state when Dom(qi)∩RTqi 6= ∅ for avoiding blocking
property. We then suppose that

∃ G(qi, qj) : (qj , x̂(t)) ∈ Dom(qj)

∀ qi : Dom(qi) ∩RTqi 6= ∅. (64)

Examples of these guard conditions are (28), (32) and (29).
From Lemma 4.2 in [16] we construct conditions for

determinism. Based on the guard conditions defined before,
there could be more possible transitions: we ban it by using
mutual exclusion among all guard transitions. So second
condition of Lemma 4.2 in [16] is not violated. Furthermore
the first condition too, thanks to the use of domains condi-
tions for guard definitions. Finally the last condition is met



because the reset set contains a single element. Then H is
deterministic.

As example, let us consider a partial hybrid automaton
H′ composed only by discrete states q1, q2: because of their
staying in the same region, it is possible to take into account
between their guards conditions only conditions about speed.

G(q1, q2) = {x ∈ <2 : x2n+1 ≥ vdes} (65)

G(q2, q1) = {x ∈ <2 : x2n+1 < vdes} (66)

Let us suppose now to change G(q2, q1) for allowing discrete
transitions even when the speed is equal to the desired one,
x2n+1 = vdes:

G(q1, q2) = {x ∈ <2 : x2n+1
≥ vdes} (67)

G(q2, q1) = {x ∈ <2 : x2n+1
≤ vdes} (68)

Let us compute the set of reachable states Reach considering
only these two states

Reach = Init = {q1} × {x ∈ <2 : 0 ≤ x2n+1 ≤ vdes}
∪ {q2} × {x ∈ <2 : x2n+1 ≥ vdes} (69)

and the set of states from which continuous evolution is not
possible

Trans = {q1} × {x ∈ <2 : x2n+1
≥ vdes}

∪ {q2} × {x ∈ <2 : x2n+1
≤ vdes}. (70)

According to Non-blocking theorem (see [16]), it is possible
to check that theorem conditions are not violated;

Reach ∩ Trans = G(q1, q2) ∩ G(q2, q1) =

{q1} × {x ∈ <2 : x2n+1
= vdes}

∪ {q2} × {x ∈ <2 : x2n+1
= vdes} (71)

So the automaton is Non-blocking. Furthermore, it is also
deterministic (see [16]) because:

1) there are no ambiguities between discrete and contin-
uos state evolution;

2) discrete transitions have a unique destination;
3) there are no reset conditions.

So it accepts a unique infinite execution for each initial state.
Hence hybrid automaton is build such that it is non blocking
and deterministic.

F. Computation of equilibrium points and region of attrac-
tion

Let us consider the system
˙∆x1 (t) = ẋ1n (t)− ẋ1n+1 (t) = ∆x2

˙∆x2 (t) = ẋ2n
(t)− ẋ2n+1

(t) =

= un − fn+1(x1n+1
, x1n

, x2n+1
, x2n

)

(72)

Under the hypothesis that ẋ2n
(t) = 0 and neglecting the

friction, we compute the equilibrium points ∆xe in ∆v−∆d
plane imposing {

˙∆x1 (t) = 0
˙∆x2 (t) = 0

. (73)

Considering the hybrid model defined in (II-A)-(II-D) and
imposing the conditions just described, we obtain that the
equilibrium points are

∆xe =

(
∆x∗

0

)
(74)

with ∆x∗ ∈ (∆R,+∞), see gray solid line in Figure 5.
Theorem 2: Given the hybrid automa-

ton defined in (II-A)-(II-D), let S ={
x ∈ R2 | (x1, x2) ∈ (∆x∗, 0) , ∆x∗ ∈ (∆R,+∞)

}
, if

the velocity of the leader is constant, i.e. ẋ2n = 0,
∀ (x, q) ∈ Init, ∃ T > 0 such that x (T ) ∈ S.

Proof: The sketch of the proof is based on the fact that
for any initial state (∆v (t0) ,∆x (t0)), the trajectory of the
state variables will arrive in S in a finite time T after a finite
number of discrete transitions. The time T is given by the
sum of the finite times in which the state remains in every
discrete state. In Figure 5 it is depicted a qualitative behavior
of the trajectories in each discrete state. For example, if
q (t0) ∈ q7 and

∆v (t0) = x2n
(t0)− x2n+1

(t0) < 0 (75)

∆x (t0) = x1n (t0)− x1n+1
(t0) , (76)

from (17) it is possible to compute the state variable evolu-
tion under the assumtpion that the velocity leader is constant.
In particular, if t0 = 0, ∃ t̄, ¯̄t such that:

∆v (t̄) = 0

∆x (t̄) = ∆x (0) + ∆v (0) ·
(
− ∆v(0)
−umin

)
+

+ 1
2 · (−umin) ·

[
∆v2(0)

(−umin)2

]
t̄ = − ∆v(0)

−umin

(77)


∆x
(¯̄t) = ∆R

∆v
(¯̄t) = ∆v (0)− umin · ¯̄t

¯̄t =
−∆v(0)+

√
∆v2(0)−2(−umin)·[∆x(0)−∆R]

fr−umin

(78)

where t̄ is the time in which ∆v = 0 and ¯̄t is the time to
arrive in ∆x = ∆R (to move from q7 to q5).

Using the same procedure, if x (t0) ∈ q5 and ∆v (t0) < 0,
if t0 = 0, ∃ t∗ such that:

∆v (t∗) = 0

∆x (t∗) = ∆x (0) + ∆v (0) · (−∆v (0)− t0) +

+ 1
2 · fr ·

[
∆v2(0)

f2
r
− t20

]
t∗ = −∆v(0)

fr

(79)

If q (t0) ∈ q5 and ∆v (t0) > 0, if t0 = 0, ∃ t∗∗ ∈ R, that
is the time to move from q5 to q1, equal to

t∗∗ = min {t1, t2, t3} (80)

where

t1 =
fr

[
−Ts +

√
T 2
s + 2

fr

(
k̄ − s̄n

)]
−∆v (0)

fr
, (81)



Fig. 5. Equilibrium points set (gray solid line) and qualitative phase portrait.

t2 =

fr

[
−Td +

√
T 2
d + 2

fr

(
¯̄k − ¯̄sn

)]
−∆v (0)

fr
, (82)

t3 =

2snKPTP ±
√

4s2
nK

2
PTP − 4

(
fx − k̄

) (
KPTP − 1

2fr

)
2
(
KPTP − 1

2fr

) ,

(83)

k̄ = ∆x (0)− ∆v2 (0)

fr
+

∆v2 (0)

2fr
, (84)

s̄n = sn + Tsx2n
, ¯̄sn = sn + Tdx2n

. (85)

In this case the time needed to move from q5 to q1 is the
minimum time for the state trajectory to intersects the lines
∆D, ∆R or the parable PTP according to the defined
hybrid system domains. The same procedure can be applied
to the remaining cases, ∀ qi ∈ Q, it exists finite time t̂ to
arrive in S or to move in a new discrete time.

III. INTERACTION BETWEEN MACROSCOPIC
PARAMETERS AND MICROSCOPIC MODEL

In this section we assume that n + 1 vehicle (named as
follower) knows not only position and speed of its leader (n
vehicle) and of all those vehicles (n−1, n−2, ...) that precede
it on a given spatial interval (M meters). By using these data
we calculate macroscopic mean speed and variance values in
the same range.

A. Variance-driven time headways model

In [17] authors formulate a variance-driven time headways
(VDT) model in terms of a meta-model to be applied to
any car-following model where a time headway T0 for
equilibrium traffic can be expressed by a model parameter or
a combination of model parameters. They relate on the driver
acting not only to his own leader, but also to the neighboring
environment.

Starting from the time headway T0, they obtain a mul-
tiplication factor αT that increases monotonously and is
restricted to a maximum value. For doing this, the local

Fig. 6. The different thresholds and regimes in Fritzsche car-following
model before and after applying VDT model.

velocity average v̄N and the local variance θN , where N
is the number of considered cars, are taken into account:

v̄N =
1

N

N−1∑
i=0

x2n+1−i
(86)

θN =
1

N − 1

N−1∑
i=0

(x2n+1−i − v̄N )2 (87)

Using these parameters the local variation coefficient VN is
defined

VN =
2
√
θN
v̄N

(88)

such that it is possible to define the multiplication factor αT

in the following way

T = αTT0 = [min(1 + γVN , α
max
T )]T0 (89)

where γ is the sensitivity of the time headway to increasing
velocity variations and αmax

T is the maximum value of the
multiplication factor. These parameters can be determined
from empirical data of the time-headway distribution for free
and congested traffic (see [17]).

B. Hybrid model integration with VDT
On the basis of the VDT model, it is possible to include

macroscopic parameters as average speed and variance into
the microscopic hybrid model defined in Section II changing
thresholds definitions. Let us consider the same previous
state-dependent guard conditions using the macroscopic in-
formation and updating the thresholds values as follows:

∆R′ = sn + αTTrx2n (90)

∆S′ = sn + αTTsx2n+1
(91)

∆D′ = sn + αTTdx2n+1
(92)

∆B′ = sn + αTTrx2n +
(∆x2)2

|bmin|+ a−n
(93)

Figure 6 shows what happens into the speed-position plane.
Now model takes into account parts of the environmental
information. In this study we consider the N vehicles in a
space of M meters in front of the n + 1 vehicle for taking
into account their speed and consequently the calculated
local mean speed and variance. Input data could come from
each vehicles or an existing road architecture that measures
macroscopic variables in some not specified way. The unique
mandatory required microscopic data are about xn vehicle
(see Figure 7).



Fig. 7. The adopted architecture. Input data can be either macroscopic (v̄N ,
θN ) or microscopic (xn, xn−1, xn−2,...): in the latter case all information
are used to compute local mean speed and local variance.

TABLE I
DATA

Parameter Value Parameter Value
Ln [m] 4.5 Ts 1
umin -7 Td 1.8
umax 5 α+

1 0.3
fr 0.15 α−

3 -0.2
kPTN 0.002 α−

4 -1
kPTP 0.002 ∆t 0.01
sn 5.5 γ 4
fx 0.05 αmax

T 2.2
Tr 0.5 M 450

IV. SIMULATION RESULTS

In this section, we provide simulation results of the
proposed control technique. We consider two simulation sets.
First we compare the basic controller and one which uses the
VDT mechanism when the desired speed is constant showing
the improvements if macroscopic data are used. Second we
outline simulation results when vehicle platoon varies its
speed. For parameters γ and αmax

T we adopted the values that
had been given from empirical data (cf. Table I). Obviously
these parameters would change depending on the considered
road.

Safety distance, fuel consumption and emission rate
(MOEe) are the performance indexes considered to quantify
differences between controlled systems behaviors. We use
MOEe model which depends on instantaneous speed (s)
and acceleration (a):

ln(MOEe) =


3∑

i=0

3∑
j=0

(Le
i,j × si × aj) for a ≥ 0

3∑
i=0

3∑
j=0

(Me
i,j × si × aj) for a < 0

(94)

Values of Le
i,j and Me

i,j parameters can be found in [18].
In this study we consider 5 vehicles on the segment road of

TABLE II
CONTINUOUS INITIAL CONDITIONS: CASE I

Vehicle x1(0) [m] x2(0) [m/s]
n+1 0 30

n 500 25
n-1 600 25
n-2 700 25
n-3 800 25

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8
Discrete states: Follower without VDT

s

q
i

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8
Discrete states: Follower with VDT

s
q
i

Fig. 8. Case I: Discrete states evolution.

450 meters in front of the considered vehicle.

A. Case study I: Platoon approach

Starting condition considered in this case are described
by Table II. Vehicle n + 1 accelerates trying to reach its
desired speed of 36 m/s, but it has to decelerate because
of the platoon and to tag along to it. Depending on the
use of VDT mechanism different discrete evolutions take
place, as described by Figure 8. As showed by Figure 9, also
continuous behaviors are different: by using VDT system
presents a better behavior. Furthermore, minimum distance
is bigger in VDT case. According to fuel consumption and
emission rate model an improvement of 3.2% is present
too: it means that only knowing additional information we
can improve vehicle performance. Indeed final results about
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Fig. 9. Case I: Leader-follower interaction.



Fig. 10. Case I: Motion described in a speed difference-distance plane.

TABLE III
CONTINUOUS INITIAL CONDITIONS: CASE II

Vehicle x1(0) [m] x2(0) [m/s]
n+1 0 22

n 400 22
n-1 500 22
n-2 600 22
n-3 700 22

vehicle state are equal.

B. Case study II: Platoon tracking

Vehicle n+ 1 accelerates trying to reach its desired speed
of 30 m/s: after it does, it has to decelerate because of a
platoon. Two possible platoon behavior are considered. In
the first one, let us intend a string stable platoon without
disturbance backward propagation; each vehicle holds the
same shifted speed profile (see Figure 12). In the second case,
we consider a platoon with speed disturbance propagation
occurring on n − 1 and n − 2 vehicles. In order to make
a good comparison, we suppose that the n vehicle behaves
as in the no disturbance case: then the platoon could not
be string stable anymore. We compare the use of VDT
mechanism in these situations. From Figure 11 we can
see that in the disturbance propagation case there is more
information respect to one without VDT mechanism. Speed
platoon profile is depicted in Figure 13. Because of the
different vehicles with time-varying speed there will be an
increase of car accident probability. Furthermore because
of the disturbance collision probability will still augment.
According to this, n + 1 vehicle driver will keep a higher
distance respect to the other case: the higher the probability
VDT mechanism faces this situation in a better way because
it keeps a bigger distance. collision increase the higher the
distance augment. Figure 12 shows each vehicle speed profile
in both cases. From Figure 13 it is possible to see that VDT
mechanism faces the increase of car accident probability
incrementing the distance. Hence the main advantage is given
by an improved safety, thanks to augmented distance, and a
non increased fuel consumption.

V. CONCLUSIONS

The hybrid system presented in this paper describes dif-
ferent ways a car driver behaves. The automaton is able
to introduce dynamical changes depending on next vehicle
microscopic behavior and on macroscopic quantities too.

Fig. 11. Case II: αT profiles in all different situations.

Fig. 12. Case II: Vehicles speed profiles.

Furthermore it similarly behaves as an human driver thanks
to psycho-physical model. In an Automatic Cruise Control
perspective it performs better from a comfort point of view.

Results described in Section IV show multiple improve-
ment. In fact they cover stuff as interaction distance or fuel
consumption or more efficient system behavior.

Given the characteristic to take into account the different
aspects related to the real behavior of a driver (comfort
desired, acceptable risk of collision, etc.), the proposed
model is suitable for being used in two ways: it can be
used either as a driving support, which recommends a skillful
performance to an human driver, either as a automatic control
able to lead the progress as if a human being was driving.

Future work will extend this model for lane-change case.
An interesting possibility would also be to take into account

Fig. 13. Case II: Interaction between n and n+ 1 vehicles.



more macroscopic parameters. The focus could also be to
try to produce a kind of ”positive” shock wave for reducing
(or totally neglecting) shock waves propagation.
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