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Abstract— This paper addresses the problem of vehicle atti-
tude control in the presence of saturating actuators. A novel
approach of actuation balancing is proven to be the best way
to keep the vehicle off saturation or, at least, to postpone the
saturation occurrences as late as possible. In hard conditions,
this may be not sufficient to guarantee tracking; hence the joint
design of a load-balancing control law and an adapted reference
generator is addressed, in order to cope with the lack in the
control action and prevent unstable behaviors. On top of the
formal results, the method is validated by means of simulations.

I. INTRODUCTION

Active attitude control systems and their integration is
one of the main research areas in vehicle control. Different
active technologies (active braking, active steering, active
differential) have been developed and applied in different
control schemes (see e.g. [1], [2], [3], [4], [5], [6]). Most
of the aforementioned work did not consider explicitly the
issue of actuator saturation, which limits the maximum
obtainable performance of mechanical actuators operating
under physical constraints. In an integrated control structure
more degrees of freedom are available for control, thus
potentially limiting the saturation occurrences.

The problem of input saturation has received increasing
attention in the control research community. Comprehensive
overviews of modern anti-windup approaches are given in
[7], [8]. In vehicle control, the basic approaches to deal
with input saturations aim either at preventing saturations
or at managing the occurrence of saturations. A discussion
of robust control techniques (including Internal Model Con-
trol, H∞ optimization, and anti-windup schemes) applied to
vehicular systems can be found in [9]. In [10]–[11], the
authors of the present work proposed some approaches to
the management of the actuator saturations, based on priority
schemes, input limiting functions and/or on a modification of
the reference signal. Although the solutions there presented
ensure good tracking performances, the problem of the
closed-loop stability of the resulting hybrid system in the
presence of discontinuity of the control actions remained, in
general, an open problem.
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In this paper, an integrated control scheme of Active Front
Steer (AFS) and Rear Torque Vectoring (RTV) is considered.
The contribution is two-fold:

1) a control law, achieving balancing of the workload
on the actuators, is designed and exponential tracking
is shown in nominal (non-saturated) conditions. Load
balancing is a principle that is common to different
fields in engineering in order to optimally distribute the
workload across multiple resources, balance the utiliza-
tion, increase reliability, and avoid overload. We pose
the balancing problem and solve it as an optimization
problem, whose goal is the guarantee that both the
actuators keep as far away as possible from saturation
conditions;

2) we use the idea in [11] of modifying the reference
generator, with a different approach. We show how to
modify the reference in order to compensate the lack
of control action of saturated actuators, while fulfilling
the physical constraints. We obtain a continuous control
action and achieve the tracking goal.

The paper is organized as follows. Section II illustrates the
vehicle model. In Section III, a control law is designed to
achieve exponential tracking of a reference vehicle model,
in the presence of unbounded inputs, also achieving load
balancing between the two actuations. Section IV addresses
the adaptation of the reference generator when saturation
conditions occur. Section V illustrates some simulation re-
sults. Section VI includes final remarks.

II. VEHICLE MODEL

In the modeling phase, we consider the classical single–
track vehicle model with two degrees of freedom: the lateral
velocity vy (m/s) and the yaw rate ωz (rad/s). Although
simple, this model well captures the major features of interest
of a vehicle for the analysis and the control design and
its simplifying assumptions are verified in a large number
of situations (see e.g. [6] for further considerations). The
dynamic equations are

m(v̇y + vxωz) = µ(Fyf + Fyr),

Jzω̇z = µ(Fyf lf − Fyrlr) +Mz,
(1)

where m is the vehicle mass (kg), Jz is the vehicle inertia
momentum (kg m2), vx is the vehicle longitudinal velocity
(m/s), lf , lr are the distances from the center of gravity to
the front and rear axle (m), Fyf , Fyr are the front/rear tire
lateral forces (N), Mz is the RTV yaw moment (N m), µ is
the tire–road friction coefficient (dimensionless).
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The actuators considered in this work are:
• Active Front Steer (AFS), which imposes an incremen-

tal steer angle on top of the driver’s input. The control is
then actuated through the front axle tire characteristic.

• Rear Torque Vectoring (RTV), which distributes the
torque in the rear axle, usually to improve vehicle
traction, handling and stability. The control is then
actuated through the rear axle tire characteristics.

The front/rear lateral forces

Fyf = Fyf (αf ), Fyr = Fyr(αr)

depend on the front/rear tire slip angles (rad)

αf = δ − vy + lfωz
vx

, αr = −vy − lrωz
vx

,

with δ = δd + δc the road wheel angle (rad), sum of the
driver angle δd (rad) and the AFS angle δc (rad). The drive
angle δd is assumed at least continuous with respect to time.

The tire lateral behavior can be represented by some
functions describing the dependence on the slip angle (see,
for instance [12]). The tires determine a force in the direction
of the slip angles, which contrasts the drift of the wheel, but
this force decreases after a certain value of the slip angle, as
in the following function:

Fyf (αf ) = Fyf,satFyf,n(αf ), Fyr(αr) = Fyr,satFyr,n(αr),

where Fyf,n and Fyr,n are normalized odd functions
(e.g. the Pacejka’s magic formulas) with global maxima
Fyf,sat, Fyr,sat > 0 at the saturation points αf,sat and αr,sat.

The actuations in the vehicle dynamics (1) are the AFS
angle δc and the RTV yaw moment Mz . The former can be
computed inverting the function Fy,f . This can be done up
to the tire saturation point αf,sat and saturating the inverse
function elsewhere, i.e.

δc =

−δd +
vy + lfωz

vx + F−1
yf (F0), |F0| ≤ Fyf,sat

−δd +
vy + lfωz

vx + αf,sat, otherwise

for a given value F0. In order to deal with simpler quantities,
one can use simple algebraic manipulations and define the
following control input:

∆c = Fyf (αf )− Fyf (αf0), (2)

with
αf0 = δd −

vy + lfωz
vx

.

Hence, the equations in (1) can be rewritten in the form

v̇y = −vxωz +
µ

m

(
Fyf (αf0) + Fyr(αr)

)
+
µ

m
∆c,

ω̇z =
µ

Jz

(
Fyf (αf0)lf − Fyr(αr)lr

)
+
µlf
Jz

∆c +
1

Jz
Mz.

(3)

The control problem is the asymptotic tracking of some
bounded reference states vy,ref and ωz,ref , which are assumed
to have bounded derivatives. The reference generator is

described later in the paper. In order words, we address the
control design problem for the actuators AFS and RTV such
that the error dynamics

evy = vy − vy,ref , eωz = ωz − ωz,ref (4)

tend to zero asymptotically and uniformly.
In the following sections, we will address the solution of

the control problem. We first design the control in nominal
condition, without considering any bounds on the actuations.

III. TRACKING WITH BALANCED ACTUATORS IN
NOMINAL CONDITIONS

The reference dynamics to be tracked are

v̇y,ref = −vxωz,ref +
µ

m

(
Fyf,ref(αf0,ref) + Fyr,ref(αr,ref)

)
,

ω̇z,ref =
µ

Jz

(
Fyf,ref(αf0,ref)lf − Fyr,ref(αr,ref)lr

)
,

αf0,ref = δd −
vy,ref + lfωz,ref

vx
,

αr,ref = −vy,ref − lrωz,ref

vx
.

(5)
The reference trajectory generator above is assumed to have a
globally asymptotically stable equilibrium at the origin. One
can show (see e.g. [13]) that a sufficient condition to obtain
such a property is that the functions Fyf,ref and Fyf,ref have
a strictly positive derivative with respect to αf,ref and αr,ref .

A. Classical Nonlinear Global Stabilization

From (3), (4), (5), the tracking error dynamics are

ėvy = −vxeωz
+
µ

m
(Ef + Er) +

µ

m
∆c,

ėωz =
µ

Jz
(Ef lf − Erlr) +

µlf
Jz

∆c +
1

Jz
Mz,

(6)

with

Ef (αf0, αf0,ref) = Fyf (αf0)− Fyf,ref(αf0,ref),

Er(αr, αr,ref) = Fyr(αr)− Fyr,ref(αr,ref).
(7)

The control inputs

∆◦c = −m
µ
k1evy +

mvx
µ

eωz
− (Ef + Er),

M◦z = −Jzk2eωz
− µ(Ef lf − Erlr)− µlf∆◦c

= mlfk1evy − Jzk2eωz −mvxlfeωz + µ(lf + lr)Er,
(8)

with k1, k2 > 0, ensure the closed–loop global exponential
stability (GES) of the error dynamics(

ėvy
ėωz

)
= −

(
k1 0

0 k2

)(
evy
eωz

)
.
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B. Balanced Nonlinear Global Stabilization

By applying the nominal inputs in (8), it may occur
that one actuation is overloaded (and possibly reaches the
saturation limit), while the other one is underused. We now
design a control action which is able to perfectly balance
the workload between AFS and RTV, in order to keep the
actuations as far away as possible from saturation. This can
be simply done by imposing (6) equal to(

ėvy
ėωz

)
= −

(
k1 k(t)

−k(t) k2

)(
evy
eωz

)
(9)

with k(t) ∈ R, obtaining

∆c = ∆◦c −
m

µ
k(t)eωz

,

Mz = M◦z + (Jzevy +mlfeωz
)k(t),

(10)

with ∆◦c , M◦z as in (8). Although the system in (9) is time-
varying, the origin is GES, as can be verified by considering
the Lyapunov function V = e2

vy + e2
ωz

. In the remainder of
this section, the optimal value for k(t) is determined.

Let Fyf,sat, Mz,sat > 0 be the saturation values for the
AFS and RTV actuators, and define

ufp =
Fyf (αf0) + ∆c

Fyf,sat
=
Fyf (αf0) + ∆◦c

Fyf,sat

− m

µ

eωz

Fyf,sat
k(t),

uzp =
Mz

Mz,sat
=

M◦z
Mz,sat

+
Jzevy +mlfeωz

Mz,sat
k(t),

(11)

where ufp, uzp ∈ [−1, 1] are control quantities that are scaled
with respect to the saturation values. The term k(t) can be
tuned to keep both the actuators as far away as possible from
the saturation point, finding the optimal value k∗(t) as the
result of the following optimization problem

k∗(t) = arg min
k(t)∈R

max
{
|ufp|, |uzp|

}
= arg min

k(t)∈R
‖up‖∞

(12)
to be solved on–line, with ‖ · ‖∞ the infinity norm and
up = (ufp, uzp)

T . We note that, for evy = eωz
= 0

(perfect tracking), the two normalized actuations in (11)
are independent of k(t), so that the problem (12) has no
solution, in general. The following result shows that, when
(evy , eωz

) 6= (0, 0), the solution of the problem in (12) is
given by the strategy which balances the load on the AFS,
RTV actuators.

Theorem 1: At any time t, the optimal solution k∗(t) of
the min max problem (12) achieves load balancing, namely

|ufp| = |uzp|
provided that (evy , eωz

) 6= (0, 0). �
Proof: The two functions in (11) are linear in k(t).

Hence, for the sake of a more compact notation, we define
the function J : R→ R as

J (k) = max
{
|a1 + b1k|, |a2 + b2k|

}
(13)

and consider the equivalent optimization problem

min
k∈R
J (k) = min

k∈R
max

{
|a1 + b1k|, |a2 + b2k|

}
. (14)

We now show that there exists a global minimum point k∗ of
the problem in (14) also enjoying the property |a1 +b1k

∗| =
|a2 + b2k

∗|.
Case 1: b1 6= 0, b2 6= 0. An illustration is given in Fig. 1. The
two functions |a1 +b1k|, |a2 +b2k| are continuous functions,
piecewise–linear, unbounded above, with global minima in
−a1/b1 and −a2/b2, respectively. Without loss of generality,
we assume −a1/b1 ≤ −a2/b2. Note that the function J
in (13) is continuous on its domain and is strictly

a) decreasing for k ∈ (−∞,−a1/b1);
b) increasing for k ∈ (−a2/b2,∞).

This implies that the global minimum k∗ in (14) is necessar-
ily achieved in the compact interval [−a1/b1,−a2/b2]. The
existence of such a minimum is ensured by the extreme value
theorem. We now define the balancing function B(k) =
|a2+b2k|−|a1+b1k| and prove that B(k∗) = 0. We consider
two sub-cases:

a) −a1/b1 = −a2/b2. In this case the minimum J (k∗) is
achieved in k∗ = −a1/b1 = −a2/b2, where both the
nonnegative functions are zero and minimized. Hence
J (k∗) = 0 and B(k∗) = 0. The balance condition is
achieved.

b) −a1/b1 < −a2/b2. Function B assumes the follow-
ing values at the endpoints of the previously defined
compact interval: B(−a1/b1) = |a2 − a1b2/b1| >
0 and B(−a2/b2) =−|a1 − a2b1/b2| < 0. Bolzano’s
theorem ensures there is a point k̄ in the open interval
(−a1/b1,−a2/b2) satisfying B(k̄) = 0, i.e. achieving
balancing. Note that k̄ is the unique point in the open
interval satisfying B(k̄) = 0, since B(k) is a strictly
decreasing linear function, with derivative −|b1| − |b2|,
in the open interval (−a1/b1,−a2/b2). We claim that k̄
is the unique global minimum of J (k), namely k∗ = k̄.
Note that, by Fermat’s theorem, there are no local
minima of J (k):

i. in (−a1/b1, k̄), since in this open interval the
function J (k) = |a2 + b2k| is a strictly decreasing
linear function, with derivative equal to −|b2| < 0;

ii. in (k̄,−a2/b2), since in this open interval the
function J (k) = |a1 + b1k| is a strictly increasing
linear function, with derivative equal to |b1| > 0.

Therefore, the optimum of J (k) is necessarily achieved
either at k̄, since it is the unique point where J
is not differentiable, or at the endpoints, i.e. k∗ ∈
{−a1/b1, k̄,−a2/b2}. Finally note that, since J is
piecewise–linear, the value of J at k̄ can be expressed
in terms of the values assumed at the endpoints of the

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 52nd IEEE Conference on Decision and Control .
Received March 11, 2013.



−a2

b2
−a1

b1

J (k) = max{|a1 + b1k|, |a2 + b2k|}

kJ (k∗)

Fig. 1. Illustration of the proof of Theorem 1 (Case 1: b1, b2 6= 0). The
plot is given for |b1| 6= |b2| and −a1/b1 < −a2/b2. The optimum point
k∗ is unique and is a point of intersection of functions |a1 + b1k| and
|a2 + b2k|, hence it achieves balancing: |a1 + b1k∗| = |a2 + b2k∗|.

open interval

J (k̄) = J (−a1/b1)− |b2|

>0︷ ︸︸ ︷(
k̄ +

a1

b1

)
︸ ︷︷ ︸

<J (−a1/b1)

= J (−a2/b2)− |b1|

>0︷ ︸︸ ︷(
− a2

b2
− k̄
)

︸ ︷︷ ︸
<J (−a2/b2)

.

Hence, k̄ is the unique global minimum point of J (k),
which concludes the proof of Case 1.

Case 2: b1 = 0 or b2 = 0. An illustration is given in Fig. 2.
We have two sub-cases:

a) b1 = 0. The min max problem is restated as

min
k∈R
J (k) = min

k∈R
max

{
|a1|, |a2 + b2k|

}
= |a1|

and the optimum is achieved for any
k ∈ [−a2/b2 − |a1/b2|,−a2/b2 + |a1/b2|], so it is
not unique. Anyway, the endpoints of the interval of
the optimum points still achieve load balancing

B

(
−a2

b2
±
∣∣∣∣a1

b2

∣∣∣∣) =

∣∣∣∣a2+b2

(
−a2

b2
±
∣∣∣∣a1

b2

∣∣∣∣)∣∣∣∣−|a1| = 0.

b) b2 = 0. The min max problem is restated as

min
k∈R
J (k) = min

k∈R
max

{
|a1 + b1k|, |a2|

}
= |a2|

and the optimum is achieved for any
k ∈ [−a1/b1 − |a2/b1|,−a1/b1 + |a2/b1|], so it is
not unique. Anyway, the endpoints of the interval of
the optimum points still achieve load balancing

B

(
−a1

b1
±
∣∣∣∣a2

b1

∣∣∣∣) = |a2|−
∣∣∣∣a1+b1

(
−a1

b1
±
∣∣∣∣a2

b1

∣∣∣∣)∣∣∣∣ = 0.

J (k) = max{|a1|, |a2 + b2k|}

k
J (k∗) = |a1|

−a1

b1

Fig. 2. Illustration of the proof of Theorem 1 (Case 2: b1 = 0 or b2 = 0).
The plot is given for the case b1 = 0 (the case b2 = 0 is symmetric).
The set of optimum points is a closed interval. Hence the endpoints of the
interval are optimum points and are the intersections of functions |a1| and
|a2 + b2k|, hence they achieve balancing: |a1| = |a2 + b2k∗|.

As already noted, the case b1 = b2 = 0 corresponds to the
case evy = eωz = 0, which will not be considered since no
solution exists, in general. This concludes the proof.

The following result characterizes the optimal gain and
the optimal percentage of actuation of the balanced control
strategy. The proof is omitted.

Proposition 1: For the ease of notation, define the time–
varying quantities

a1=
Fyf (αf0) + ∆◦c

Fyf,sat
, b1 = −m

µ

eωz

Fyf,sat
,

a2=
M◦z
Mz,sat

, b2 =
Jzevy +mlfeωz

Mz,sat
,

and the interval

I =

{
[α, β] if b1, b2 6= 0

R otherwise

with α = min
{
− a1/b1,−a2/b2

}
, β = max

{
− a1/b1,

−a2/b2
}

, and assume (b1, b2) 6= (0, 0). Then
1. The optimal gain k∗(t) in (12) belongs to the set I∗

defined as

I∗ =



{
a2 − a1
b1 − b2

}
if b1 = −b2{−a2 − a1

b1 + b2

}
if b1 = b2

I ∩
{
a2 − a1
b1 − b2 ,

−a2 − a1
b1 + b2

}
otherwise.

(15)

2. The optimum balanced percentage of actuation in (12)
is given by

‖u∗p‖∞ = |u∗fp| = |u∗zp| =
|a1b2 − a2b1|
|b1|+ |b2|

. � (16)

Remark 1: The following comments are in order:
• The quantities a1, a2, b1, b2 are continuous with respect

to vy , ωz , evy , eωz
, ∆◦c , M◦z , δd. Since all these

quantities are continuous in time, then a1, a2, b1, b2
are continuous in time.
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• The optimal gain k∗(t) in (15) is uniquely defined
unless b1 = 0 or b2 = 0. When this happens, the set I∗
contains two optimal values (see Fig. 2), among which
k∗(t) can be arbitrarily chosen, and jump discontinuities
in the optimal gain function may occur, in general.
Anyway the optimal balanced percentage ‖u∗p‖∞ in (16)
is continuous at any time.

• The balanced actuations ∆c and Mz are computed
by plugging the optimal gain k∗(t) in (15) into (10);
to prevent jump discontinuities in ∆c and Mz , as a
consequence of the discontinuity of the optimal gain,
the computed inputs can be low-pass filtered in a real
implementation.

• The optimal gain k∗(t) is bounded, as shown in the
proof of Theorem 1. Hence, the balanced actuations are
bounded at any time. �

Even in the case of load balancing, one can get ‖up‖ = 1
at some time t in the evolution of the system. When that
happens, we enter the saturation condition with both the
actuators. The next section addresses the systematic design
of the reference generator in order to avoid this situation.

IV. TRACKING IN THE PRESENCE OF ACTUATOR
SATURATION: THE REFERENCE GENERATOR AS AN

ADDITIONAL CONTROL INPUT

In the presence of actuator saturation, the reference gen-
erator can be adapted to impose less stringent references,
with the aim of avoiding such an issue. In fact, the role of
the reference generator is to generate trajectories that can
be actually followed by the real vehicle. Therefore, there
is no reason to generate impractical references, determining
actuator saturation, since in this case the real vehicle cannot
track those trajectories.

In the following, we propose two different ways of mod-
ifying the reference generator and we also quantify the
reference modifications in terms of the amount of computed
control action which cannot be exerted. The method is
independent of the reference dynamics which is used in the
case of non-saturating actuators.

Case 1: Additive terms. In this first case, one adds some
fictitious forces ∆f ,∆r, which can be regarded as additional
inputs, to be imposed in order to avoid actuator saturation.
The proposed reference generator is the following

v̇y,ref = −vxωz,ref +
µ

m

(
Fyf,ref(αf0,ref) + ∆f

+ Fyr,ref(αr,ref) + ∆r

)
,

ω̇z,ref =
µ

Jz

(
Fyf,ref(αf0,ref)lf + ∆f lf

− Fyr,ref(αr,ref)lr −∆rlr

)
,

(17)

with αf0,ref , αr,ref as in (5). From (3), (4), (17), the tracking

error dynamics become

ėvy = −vxeωz +
µ

m
(Ef −∆f + Er −∆r) +

µ

m
∆c,

ėωz
=

µ

Jz
(Ef lf −∆f lf − Erlr + ∆rlr)

+
µlf
Jz

∆c +
1

Jz
Mz,

with Ef , Er as in (7). By imposing the dynamics (9), one
gets

∆c = ∆◦c −
m

µ
k∗(t)eωz + ∆f + ∆r,

Mz = M◦z + (Jzevy +mlfeωz )k∗(t)− µ(lf + lr)∆r,

with ∆◦c , M◦z as in (8) and k∗(t) being the solution of
the optimal problem (12). From the definition (2), and
considering the scaled control quantities

u∆
fp = u∗fp +

∆f + ∆r

Fyf,sat
,

u∆
zp = u∗zp − µ

(lf + lr)∆r

Mz,sat
,

with u∗fp, u
∗
zp being the optimum values of ufp, uzp in (11)

for k(t) = k∗(t), one can determine ∆f ,∆r by imposing
u∆
fp, u

∆
zp ∈ [−1, 1], so obtaining

∆r =


(u∗zp − 1)

Mz,sat

µ(lf + lr)
if u∗zp > 1,

0 if u∗zp ∈ [−1, 1],

(u∗zp + 1)
Mz,sat

µ(lf + lr)
if u∗zp < −1,

∆f =


(1− u∗fp)Fyf,sat −∆r if u∗fp > 1,
−∆r if u∗fp ∈ [−1, 1],
−(1 + u∗fp)Fyf,sat −∆r if u∗fp < −1.

Case 2: Multiplicative terms. In this second case, one consid-
ers some fictitious friction coefficients λf , λr ∈ [0, 1], which
can be regarded as additional inputs, “fading” the tyre forces
in order to avoid actuator saturation. Therefore, the proposed
reference generator is the following

v̇y,ref = −vxωz,ref +
µ

m

(
λfFyf,ref(αf0,ref)

+ λrFyr,ref(αr,ref)
)
,

ω̇z,ref =
µ

Jz

(
λfFyf,ref(αf0,ref)lf − λrFyr,ref(αr,ref)lr

)
,

(18)

with αf0,ref , αr,ref as in (5). From (3), (4), (18), the tracking
error dynamics become

ėvy = −vxeωz +
µ

m
(Fyf − λfFyf,ref + Fyr − λrFyr,ref)

+
µ

m
∆c,

ėωz =
µ

Jz
(Fyf lf − λfFyf,ref lf − Fyrlr + λrFyr,ref lr)

+
µlf
Jz

∆c +
1

Jz
Mz,
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with Ef , Er as in (7). By imposing the dynamics (9), one
gets

∆c = ∆◦c −
m

µ
k∗(t)eωz − (1− λf )Fyf,ref

− (1− λr)Fyr,ref ,

Mz = M◦z + (Jzevy +mlfeωz )k∗(t)

+ µ(lf + lr)(1− λr)Fyr,ref ,

with ∆◦c , M◦z as in (8) and k∗(t) being the solution of the
optimal problem (12). As in the previous case, from the
definition (2), and considering the scaled control quantities

uλfp = u∗fp −
(1− λf )Fyf,ref + (1− λr)Fyr,ref

Fyf,sat
,

uλzp = u∗zp + µ
(lf + lr)(1− λr)Fyr,ref

Mz,sat
,

with u∗fp, u
∗
zp being the optimum values of ufp, uzp in (11)

for k(t) = k∗(t), one can determine λf , λr by imposing
uλfp, u

λ
zp ∈ [−1, 1], so obtaining

λr =


1 + (u∗zp − 1)

Mz,sat

µ(lf + lr)Fyr,ref
if u∗zp > 1,

1 if u∗zp ∈ [−1, 1],

1 + (u∗zp + 1)
Mz,sat

µ(lf + lr)Fyr,ref
if u∗zp < −1,

λf =


1−(u∗fp − 1)

Fyf,sat

Fyf,ref
+(1− λr)Fyr,ref

Fyf,ref
if u∗fp > 1,

1+(1− λr)Fyr,ref

Fyf,ref
if u∗fp∈ [−1, 1],

1−(u∗fp + 1)
Fyf,sat

Fyf,ref
+(1− λr)Fyr,ref

Fyf,ref
if u∗fp < −1.

V. SIMULATION RESULTS

In this section, we provide simulation results of the pro-
posed control techniques. We consider two simulation sets.
First, we show some results about the balanced nonlinear
controller described in Section III. Then, we show the per-
formance of the controller with adaptive reference generation
in the presence of actuator saturation, illustrated in Section
IV.

The parameters of the vehicle are equal to

m = 1550 kg lf = 1.17 m lr = 1.43 m

Mz,sat = 10000 Nm Jz = 2300 kg ·m2 µ = 1

Fyf,sat = 8854 N Fyr,sat = 8394 N

and we set k1 = k2 = 1 in the error dynamics (9). The tire
lateral force functions are given by [12]

Fy,f (αf ) = Cy,f sin(Ay,f arctan(By,fαf ))

Fy,r(αr) = Cy,r sin(Ay,r arctan(By,rαr))

(19)

where Ay,f = 1.81, Ay,r = 1.68, By,f = 7.2, By,r = 11,
Cy,f = Fyf,sat, Cy,r = Fyr,sat.

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 3. Driver wheel angle [rad] vs time [s].
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Fig. 4. Percentage of actuation vs time [s]. Case A) - Vehicle with nominal
controller: |ufp| (blue dashed line) and |uzp| (black solid line). Case B) -
Vehicle with balanced controller: |ufp| (blue dashed line) and |uzp| (black
solid line).

The nominal reference generator is assumed to have the
same vehicle parameters but different tire functions, ensuring
global asymptotic stability of the reference dynamics. Further
details about the reference generation are given in [10].

A. Performance of the balanced nonlinear controller

The first test maneuver is a step steer of 65◦ with lon-
gitudinal velocity of 35 m/s (see Fig. 3). In Figures 4, 5
and 6 we show, respectively, the percentage of actuation, the
state variables and the planar trajectory in the case of vehicle
controlled by means of the nominal controller (Section III-
A) and in the case of vehicle controlled by balancing the
actuators (Section III-B). The step steer occurs at time t = 1.
The nominal controller (Fig. 4-A) reacts by means of the
AFS actuation, which rapidly enters the saturation condition.
After that, the RTV is increased to compensate the lack of
tracking. At time t = 2.2, the RTV is saturated and the
tracking is lost. The balanced controller (Fig. 4-B), instead,
provides the same percentage of actuation with both the
inputs. At time t = 1.8, the saturation is reached but the
whole control action is recovered after t = 2 and the tracking
is achieved (see Figures 5–6). Note from Fig. 4-B that the
steady-state percentage of actuation ‖u∗p‖∞ is about 0.95
(i.e. the 95% of the available control), which indicates a
rather hard cornering maneuver, yet feasible by balancing
the control effort.
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Fig. 5. Panel A) - vy [m/s] vs time [s]: reference (black dash-dotted line),
nominal controller (blue dashed line) and balanced controller (magenta solid
line); Panel B) - ωz [rad/s] vs time [s]: reference (black dash-dotted line),
nominal controller (blue dashed line) and balanced controller (magenta solid
line).
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Fig. 6. Trajectory in the plane: reference (black dash-dotted line), nominal
controller (blue dashed line) and balanced controller (magenta solid line).

B. Performance of the reference adaptation

We now consider the balanced controller in Section III and
we compare the behavior of a vehicle following a reference
generator designed for nominal conditions to the behavior
of a vehicle whose reference is adapted by means of the
adaptive technique presented in Section IV. For lack of space,
we just consider Case 1 of Section IV, using additive terms
in the reference.

The test maneuver considered is a double step steer (see
input driver in Fig. 7) of 100◦ with longitudinal velocity
of 35 m/s. Such a maneuver is very hard and the control
actuators are in saturation most of the time (see Fig. 8).

Figures 9–10 show that the ideal reference trajectory is too
strict and causes the instability of the vehicle controlled by
means of the balanced controller without reference adapta-
tion. On the contrary, the adapted reference trajectory looks
feasible and the corresponding vehicle has a stable behavior,
also achieving a good tracking, in spite of the very hard
maneuver imposed by the driver.
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Fig. 7. Driver wheel angle [rad] vs time [s].
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Fig. 8. Percentage of actuation vs time [s]. Case A) - Vehicle with balanced
controller without reference adaptation: |ufp| (blue dashed line) and |uzp|
(black solid line). Case B) - Vehicle with balanced controller and reference
adaptation: |ufp| (blue dashed line) and |uzp| (black solid line).
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Fig. 9. Panel A) - vy [m/s] vs time [s]: nominal reference (black
dotted line), balanced controller without reference adaptation (blue dashed
line), adapted reference (red dash-dotted line), balanced controller with
reference adaptation (magenta solid line); Panel B) - ωz [rad/s] vs time [s]:
nominal reference (black dotted line), balanced controller without reference
adaptation (blue dashed line), adapted reference (red dash-dotted line),
balanced controller with reference adaptation (magenta solid line).
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Fig. 10. Trajectory in the plane: nominal reference (black dotted line),
balanced controller without reference adaptation (blue dashed line), adapted
reference (red dash-dotted line), balanced controller with reference adapta-
tion (magenta solid line).

VI. CONCLUSIONS

In this paper, we addressed the topic of vehicle attitude
control by means of Active Front Steer And Rear Torque
Vectoring, in the presence of actuator saturation. We pro-
posed a balancing approach for the design of a nonlinear
control law achieving the tracking goal while keeping the
vehicle far from saturation. This was obtained by redis-
tributing the workload on the actuators. Anyway, in hard
maneuvers, saturations may still occur even in the presence
of a balancing controller. In order to avoid this issue, the
reference is adapted to prevent the lack of control action.
Simulations show the effectiveness of the proposed method.

Improvements of the results, taking into account parameter
uncertainties, are currently under study. Furthermore, we plan
to extend the simulation setup by means of a more realistic
simulation environment (such as a commercially available
industrial simulator), in order to show the robustness of the
proposed approach.
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