

EECI-HYCON2 Graduate School on Control www.eeci-institute.eu/GSC2012 Spring 2012

18 INDEPENDENT MODULES – one 21 hours module per week (3 ECTS) Deadline for ADVANCE REGISTRATION to each module: 16/12/2011 *****Limited seating: register as soon as possible *****

Locations: Supelec (South of Paris), Istanbul (Turkey), L'Aquila (Italy)

M1 30/01/2012 – 03/02/2012	Advanced Control of Physical Systems Arising in Modern Technological Applications	Romeo Ortega
<mark>M2</mark> 06/02/2012 – 10/02/2012	Modelling, State Estimation and Vision Based Control of Aerial Robotic Vehicles	Robert Mahony/ Tarek Hamel
<mark>M3</mark> 13/02/2012 – 17/02/2012	Randomization in Systems and Control Design - the Scenario Approach	Marco C. Campi/ Simone Garatti
M4 20/02/2012 – 24/02/2012	Decentralized and Distributed Control	Giancarlo Ferrari-Trecate/ Marcello Farina
<mark>M5</mark> 27/02/2012 – 02/03/2012	Theory of Observers	Laurent Praly
M6 05/03/2012 – 09/03/2012	Introduction to Nonlinear Control	Hassan Khalil
M7 12/03/2012 – 16/03/2012	Backstepping Control of PDEs and Delay Systems	Miroslav Krstic
M8 19/03/2012 – 23/03/2012	Recent Advances of Sliding Mode Control	Vadim I. Utkin
M9 26/03/2012 – 30/03/2012	Regulation and Tracking for Nonlinear Systems, with Emphasis on Recent Advances and Open Problems	Alberto Isidori
M10 02/04/2012 – 06/04/2012	Control of Highly Nonlinear Systems	Claude Samson / Pascal Morin
<mark>M11</mark> 09/04/2012 – 13/04/2012	Nonlinear Controllability, Observability, and Optimal Control Problems in Robotics	Antonio Bicchi
<mark>M12</mark> 30/04/2012 – 04/05/2012	Quantum Control and Quantum Information Processing	Roger W. Brockett
M13 07/05/2012 – 11/05/2012	Hybrid Dynamical Systems: Stability and Control	Andrew Teel
M14 14/05/2012 – 18/05/2012	Mean Field Stochastic Systems and Control	Peter E. Caines
M15 21/05/2012 – 25/05/2012	Distributed Control	A. Stephen Morse
lstanbul M16 16/04/2012 – 20/04/2012	Controlled Synchronisation of Physical Systems	Antonio Loria / Elena Panteley
Istanbul M17 23/04/2012 – 27/04 <u>/2012</u>	Optimality, Stabilization, and Feedback in Nonlinear Control	Francis Clarke
L'Aquila M18 14/05/2012 – 18/05/2012	Specification, Design and Verification of Distributed Control Systems	Richard Murray / Ufuk Topcu

European Embedded Control Institute

L'Aquila M18 14/05/2012 – 18/05/2012 Specification, Design and Verification of Distributed Control Systems

Richard Murray Control and Dynamical Systems California Institute of Technology, USA http://www.cds.caltech.edu/~murray murray@cds.caltech.edu

Ufuk Topcu Control and Dynamical Systems California Institute of Technology, USA http://www.cds.caltech.edu/~utopcu utopcu@cds.caltech.edu

Abstract of the course:

Increases in fast and inexpensive computing and communications have enabled a new generation of information-rich control systems that rely on multi-threaded networked execution, distributed optimization, sensor fusion and protocol stacks in increasingly sophisticated ways. This course will provide working knowledge of a collection of methods and tools for specifying, designing and verifying distributed control systems. We combine methods from computer science (temporal logic, model checking, reactive synthesis) with those from dynamical systems and control (Lyapunov functions, sum-of-squares certificates, receding horizon control) to analyze and design partially asynchronous control protocols for continuous systems. In addition to introducing the mathematical techniques required to formulate problems and prove properties, we also describe a software toolbox that is designed for analyzing and synthesizing hybrid control systems using linear temporal logic and robust performance specifications.

The following topics will be covered in the course:

* Transition systems and automata theory

digiteo

- * Specification of behavior using linear temporal logic
- * Algebraic certificates for continuous and hybrid systems
- * Approximation of continuous systems using discrete abstractions
- * Verification of (asynchronous) control protocols using model checking
- * Synthesis of control protocols and receding horizon temporal logic planning
- * Case studies in autonomous navigation and vehicle management systems

