Modelling, Analysis and Design of Wireless Networked Control Systems

Alessandro D’Innocenzo

Department of Information Engineering, Computer Science and Mathematics
Center of Excellence for Research DEWS, University of L’Aquila
EU FP7 NoE Hycon2: Highly-complex and networked control systems, 2010-2014
Total cost: 4.9M€
Challenge: close the loop around wireless multi-hop control networks.
Wireless control systems

Challenge: close the loop around wireless multi-hop control networks.
Wireless control systems

Challenge: close the loop around wireless multi-hop control networks.
WirelessHART MAC layer (scheduling)

- time is divided in periodic frames, each divided in Π time slots, each of duration Δ
- to avoid interference, a periodic scheduling allows each node to transmit data only in a subset of time slots
- model impact of scheduling on the closed-loop dynamics

![Diagram of WirelessHART MAC layer](image-url)
WirelessHART MAC layer (scheduling)

- time is divided in periodic frames, each divided in Π time slots, each of duration Δ
- to avoid interference, a periodic scheduling allows each node to transmit data only in a subset of time slots
- model impact of scheduling on the closed-loop dynamics
WirelessHART MAC layer (scheduling)

- time is divided in periodic frames, each divided in Π time slots, each of duration Δ
- to avoid interference, a periodic scheduling allows each node to transmit data only in a subset of time slots
- model impact of scheduling on the closed-loop dynamics
WirelessHART network layer (routing)

- Single path vs multi path routing
- Static vs Dynamic routing
- Redundancy in the data routing (flooding) and network coding
Wireless control networks as switching systems

Mathematical model: \(x(t + 1) = A(\sigma(t))x(t) + B(\sigma(t))u(t), t \in \mathbb{N} \), where \(x(t) \) is the plant state, \(\sigma(t) \in \Sigma \) depends on routing/scheduling and \(u(t) = K(t)x(t) \) is the control signal. The communication parameters are considered as a disturbance.
Wireless control networks as switching systems

Mathematical model: \(x(t + 1) = A(\sigma(t))x(t) + B(\sigma(t))u(t), \; t \in \mathbb{N} \), where \(x(t) \) is the plant state, \(\sigma(t) \in \Sigma \) depends on routing/scheduling and \(u(t) = K(t)x(t) \) is the control signal. The communication parameters are considered as a disturbance.
Wireless control networks as switching systems

Mathematical model: \(x(t + 1) = A(\sigma(t))x(t) + B(\sigma(t))u(t), \; t \in \mathbb{N} \), where \(x(t) \) is the plant state, \(\sigma(t) \in \Sigma \) depends on routing/scheduling and \(u(t) = K(t)x(t) \) is the control signal. The communication parameters are considered as a disturbance.
Wireless control networks as switching systems

Mathematical model: $x(t + 1) = A(\sigma(t))x(t) + B(\sigma(t))u(t), t \in \mathbb{N}$, where $x(t)$ is the plant state, $\sigma(t) \in \Sigma$ depends on routing/scheduling and $u(t) = K(t)x(t)$ is the control signal. The communication parameters are considered as a disturbance.

Problem 1: given $K(t)$, verify whether the closed loop systems is asymptotically stable, i.e. the Joint Spectral Radius of $\{A(\sigma(t)) + B(\sigma(t))K(t)\}_{\sigma(t) \in \Sigma}$ is smaller than 1.

Problem 2: Design a controller $K(t)$ such that the closed loop system is asymptotically stable.

Insight: stabilizability depends on our knowledge of the switching signal $\sigma(t)$:

- We cannot measure $\sigma(t)$: then $K(t) = K, \forall t \in \mathbb{N}$
- We can measure and keep memory of $\sigma(t), K(t) = K\left(\sigma(t - d) \cdots \sigma(t)\right)$
- We also have a finite horizon knowledge of future N switching signals $\sigma(t): K(t) = K\left(\sigma(t - d) \cdots \sigma(t + N)\right)$
Wireless control networks as switching systems

Collaborations:
Raphael Jungers (Université Catholique de Louvain)
Nicola Guglielmi (University of L'Aquila)
George Pappas (University of Pennsylvania)

Selected Publications:

Fault tolerant stabilizability of wireless control networks

Mathematical model:
\[x(t + 1) = Ax(t) + Bu(t) \]
\[y = Cx(t), \ t \in \mathbb{N} \]
Fault tolerant stabilizability of wireless control networks

Mathematical model:
\[x(t + 1) = Ax(t) + Bu(t) \]
\[y = Cx(t), \quad t \in \mathbb{N} \]
Fault tolerant stabilizability of wireless control networks

Mathematical model:
\[x(t + 1) = Ax(t) + Bu(t) \]
\[y = Cx(t), t \in \mathbb{N} \]
Fault tolerant stabilizability of wireless control networks

Mathematical model:
\[x(t + 1) = Ax(t) + Bu(t) \]
\[y = Cx(t), \quad t \in \mathbb{N} \]
Fault tolerant stabilizability of wireless control networks

\[F = 2^{E_R \cup E_\emptyset} \] set of all configurations of links subject to a failure or a malicious intrusion

Assumption: Failures are slow with respect to plant time constants
Fault tolerant stabilizability of wireless control networks

\[F = 2^{E_R \cup E_O} \] set of all configurations of links subject to a failure or a malicious intrusion

Assumption: Failures are slow with respect to plant time constants

Problem 1: *Design* the communication system parameters of \(G_R \) and \(G_O \) (topology, scheduling, routing) to guarantee existence of a stabilizing controller for any failure

Problem 2: *Design* the communication system parameters to guarantee the existence of a Fault Detection and Isolation (FDI) systems

Insight: Translate classical stabilizability and FDI conditions on LTI systems to conditions on the communication system parameters
Fault tolerant stabilizability of wireless control networks

Selected Publications:

Co-analysis and co-design of wireless control systems using finite probabilistic abstractions

Mathematical model: $S: x(t + 1) = f(x(t), \sigma(t), u(t), p(t)), t \in \mathbb{N}$:

- $x(t)$ is the plant state, $f(\cdot)$ is a non-linear function
- $\sigma(t) \in \Sigma$ is a Markov Chain depending on routing, scheduling, and packet losses
- $u(t)$ is the plant control signal
- $p(t) \in P$ is the transmission power control signal
Co-analysis and co-design of wireless control systems using finite probabilistic abstractions

Mathematical model: $S: x(t + 1) = f(x(t), \sigma(t), u(t), p(t)), t \in \mathbb{N}$:
- $x(t)$ is the plant state, $f(\cdot)$ is a non-linear function
- $\sigma(t) \in \Sigma$ is a Markov Chain depending on routing, scheduling, and packet losses
- $u(t)$ is the plant control signal
- $p(t) \in P$ is the transmission power control signal

Problem 1: given the control signals $u(t), p(t)$, verify whether the closed loop system satisfies a probabilistic property (e.g. unsafe with probability $< 10^{-9}$)

Insight: Derive a **Markov Chain** abstraction of the controlled stochastic process S with precision ε and use **Model Checking** techniques. Need models to handle both non-determinism and stochasticity: **Markov-set chains, Interval Markov Chains**.

Problem 2: given S, design a control laws for $u(t), p(t)$ such that the closed loop system satisfies a probabilistic property.

Insight: Derive a **Markov Decision Process** (MDP) abstraction of the stochastic process S with precision ε and use design techniques for MDPs.
Wireless control networks as switching systems

Collaborations:
Alessandro Abate (University of Oxford)
Joost-Pieter Katoen (RWTH Aachen University)
Claudia Rinaldi and Fortunato Santucci (University of L'Aquila)

Selected Publications:
