

The hypoglycaemia free artificial pancreas project

28 january 2020

Claude MOOG, LS2N, Nantes France

Directeur de recherche CNRS Fellow of the IEEE

Joint work with

- Emeric Scharbarg
- Nicolas Magdelaine
- Eric Le Carpentier

content

- Some history/state of the art
- Mathematical model
- Identification
- Control

• The perspectives (hospital & industry...)

3

Main message

- Stick to medical practice: FIT, Flexible Insulin Therapy
- \rightarrow Constraints on the model

• Avoid hypoglycemia

→ Existing (Medtronic, Diabeloop) solutions may be open loop for up to 30% of the time

The general population vs Diabetes

- No diabetes
- Type $1 \rightarrow$ no insulin production by the pancreas
- Type 2 → aging patients, lack of insulin production, decrease of sensitivity
- diabetis related to pregnancy

Biology – the natural mechanism which regulates glycemia

A challenging control problem

Long standing contributions !

- PADOVA : C. Cobelli et al.
- Montpellier hospital : E. Renard
- ...
- > 1960's

Our choices/constraints

- Stick to medical practice: FIT, Flexible Insulin Therapy →Recover the basal rate from the mathematical model Definition - the basal insulin rate stabilizes any glucose concentration.
- Avoid hypoglycemia
- ightarrow Positivity of the system

Mathematical model

• Stick to medical practice: FIT, Flexible Insulin Therapy

If no meal & stable glycemia: $\dot{G} = 0$ Or $\dot{G} = \theta(I_{basal} - I)$

$$\dot{G} = \theta_1 - \theta_2 I$$

d:
$$\dot{G} = \theta_1 - \theta_2 I + \theta_3 D$$

If a meal is ingested:

Mathematical model

$$\dot{G} = \theta_1 - \theta_2 I + \theta_3 D$$

 θ_1 : glucose delivery from the liver – consumption by the brain...

- $\boldsymbol{\theta}_2$: insulin sensitivity factor
- θ_3 : sensitivity to digested carbohydrates

Ref.: Tolic et al. J. Theor. Biol. (2000) 207, 361-375.

Mathematical model

$$\dot{G} = \theta_1 - \theta_2 I + \theta_3 D$$
$$I_{basal} = \theta_1 / \theta_2$$

Insulin diffusion : may involve several compartments

Digestion of carbohydrates : may involve several compartments.

Drawback for identification from clinical data: declared meals are questionable

$$\dot{G} = \theta_1 - \theta_2 I + \theta_3 D$$

\rightarrow Option 1 : Redefine the time when meals occur, their amplitude...

What is a linear model good for ?

Clinical data from Nantes hospital and Rennes hospital

Patient IF2

Patient LR

Patient LR: adaptive estimation

Criticism:

the sequence of meals is used an extra « tuning » for the best fit

Lack of methodology for a suitable processing of the meal data 🟵

Towards a methodology for identification

Option 2 :

Select some identifiable events in clinical data as:

Towards a methodology for identification

$$\dot{G} = \theta_1 - \theta_2 I + \theta_3 D$$

identification of θ_3

Special event: when glycemia is too low, $I = I_{basal} = \theta_1 / \theta_2$ and $D \neq 0$

Towards a methodology for identification

$$\dot{G} = \theta_1 - \theta_2 I + \theta_3 D$$

identification of θ_3

The inclusion of digestion dynamics $\dot{D} = -\theta_4 D + \theta_4 M$

allows to identify the « duration » of the effect of the meal M, according to its glycemic index

Type of the model

up to some insulin compartments and some digestion compartments:

$$\dot{G} = \theta_1 - \theta_2(G) \cdot I + \theta_3 D$$
$$\dot{D} = -\theta_4 D + \theta_4 M$$
$$\bigcup$$
Depends on the glycemic index

Control

Real life « manual » control

Insulinothérapie schéma Basal/Bolus

Slow action insulin Fast action insulin

Insulin pump

With a single type of insulin

Continuous flow: basal rate

Impulse-like control: bolus

Closing the loop ?

Closing the loop ?

• Mainstreams:

Model predictive control (Diabeloop) PID (Medtronic)

Control

Dynamic Bolus calculator

derived from the expertise of practioners

Bolus calculator

• Derived from real life devices

BOLUS	US TOTAL		1	
Carb BG IOB Total =	2.26U + 3.25U 1.50U 4.00U			
Main Me	nu		關	OK

Bolus calculator

• Reduces to a state feedback:

Insulin to be injected = insulin required – insulin already injected

$$u = u_{BG} - u_{IoB}$$

$$u = k_1 G - k_2 (I_{SC} + I_P)$$

G = glycemia lsc = sub sutaneous Insulinemia lp = Insulin in plasma

Bolus calculator properties

• state feedback:
$$u = k \left[\frac{1}{\theta_2} G - \frac{1}{\theta_3} (I_{SC} + I_P) \right]$$

- Defines the largest positively invariant subset !
- Under any other state feedback, the largest PIS shrinks

G = glycemia Isc = sub sutaneous Insulinemia Ip = Insulin in plasma

Positively Invariant Set

Dynamic Bolus Calculator

reference

N. Magdelaine, P.S. Rivadeneira, L. Chaillous, A.L. Fournier-Guilloux, M. Krempf, T. MohammadRidha, M. Aït-Ahmed and C.H. Moog,

The Hypoglycaemia-Free Artificial Pancreas Project, IET Systems Biology, 2020, vol. 14, pp. 16-23.

Conclusions and perspectives

- What is specific:
- Recover the FIT parameters from the model
- Positive control (hypoglycemia avoidance)
- Coming next:
- Methodology for identification of the basal, CIR,...
- Clinical trial of identification
- Prototype

Conclusions and perspectives

- Main achievement: modelling
- N. Magdelaine, L. Chaillous, I. Guilhem, J.Y. Poirier, M. Krempf, C.H. Moog and E. Le Carpentier,
- A Long-term Model of the Glucose-Insulin Dynamics of Type I Diabetes,
- IEEE Transactions on Biomedical Engineering, (2015).

Conclusions and perspectives

- Main achievement: modelling
- Implementation of the state feedback (OpenAPS)