

Smart Technologies for Biomedical and Environmental Applications A joint DEWS@UNIVAQ – IASI@CNR Laboratory

Model-based control of plasma glycemia: in quest of robustness The symbolic approach: a tool to tame the complexity of models and specifications

Alessandro Borri

Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti" Consiglio Nazionale delle Ricerche (IASI-CNR) Rome, Italy alessandro.borri@iasi.cnr.it

> 3rd BEA-SmarT Workshop L'Aquila, January 28, 2020

AP control loop

it delivers continuous subcutaneous insulin therapy

BEA-SmarT event

Single-delay model

Model equations

Adapted from Panunzi et al. (2007), Palumbo et al. (2007)

Glycemia [mM]

Insulinemia [pM]

Init conditions

 $G(t) = G_h \quad \forall t < d$

$$\frac{dG(t)}{dt} = -k_{xgi}G(t)I(t) + \frac{T_{gh}}{V_G}$$

$$\frac{dI(t)}{dt} = -k_{xi}I(t) + \frac{T_{iGmax}}{V_I}\varphi\left(G(t - \tau_g)\right) + u(t)$$

$$0 \quad I(t) = I_b \quad \forall t < 0$$

$$\varphi(x) = \frac{\left(\frac{x}{G^*}\right)^{\gamma}}{1 + \left(\frac{x}{G^*}\right)^{\gamma}}$$

 $G(0) = G_b + G_\Delta \qquad I(0) = I_b + I_{\Delta G} G_\Delta$

Equilibrium constraints: $T_{gh} = k_{xgi}G_bI_bV_g$ $T_{iGmax} = k_{xi}I_bV_i$

Challenges in glucose regulation via insulin

Challenges

- From a control-theoretic viewpoint, insulin is a **non-negative input**
- Food as a source of uncertainty
- Random variations (hormones, stress, physical activity...)
- The **subcutaneous compartment** introduces filtering/delay effects
- I/O sampling and quantization
- Actuation lags

Time-varying control targets

TABLE I

CONTROL TARGETS

Target	Range $[mM]$
Very good fasting glycemia	$3.9 \le G(t) < 5.6$
Good fasting glycemia	$5.6 \le G(t) < 6.5$
Satisfactory pre-prandial state	$4.4 \le G(t) < 7.2$
Very good post-prandial (2 hours after meal) state	G(t) < 7.8
Good post-prandial (2 hours after meal) state	$7.8 \le G(t) < 10$

Targets established according to current clinical practice recommendations and guidelines of the American Diabetes Association (ADA) for the diabetes care and treatment.

EWS Control based on SDM

«Classical» nonlinear state/output feedback control:

• (semiglobal, practical) stabilization can be imposed, but the other guarantees need to be **«a-posteriori»** checked

How to deal systematically with:

- complex specifications?
- positive inputs?
- (possibly given) quantization parameters (CGM sampling time, insulin units) and non-idealities arising in a digital environment?

A possible answer: **formal methods**.

Formal Methods in Control

- Formal methods are mathematically based techniques for the specification, development and verification of software and hardware systems
- Mathematical analysis contributes to the reliability and robustness of a design
- Combination of discrete, continuous, heterogeneous and distributed systems

DEWS Formal Methods in Control

Modern systems are characterized by tight interaction of many distributed, real-time computing systems and physical systems (the so-called Cyber-Physical Systems, CPS)

Examples: Airplanes, cars, buildings with advanced HVAC controls, manufacturing plants, power plants

- Computational systems, but not stand alone computers, interfacing sensors and actuators, reactive to physical environment stimuli, designed to perform one or a few dedicated functions, often with real-time computing constraints.
- Coordination between physical process and computing/communication components.

A. Borri (2011): Hybrid Control of Cyber-Physical Systems, PhD Thesis

CPS for healthcare: CENTER OF EXCELLENCE Cyber-Medical Systems

Features of Cyber-Medical Systems (CMS) L. Kovács (2017)

- Mathematical algorithms able to be personalized on the patients' need and physiology
- <u>Control engineering methods</u> and real-time computation to fasten and intensify a "knowledge-based" intelligent decision support
- Artificial Intelligence and big data analysis for feature extraction

Artificial Pancreas is a CMS involving technological advances in diabetes treatment:

- Continuous Glucose Monitors (CGMs)
- Insulin pumps

Formal methods: a tool to tame the complexity of CPS and to deal with logic requirements and complex specifications.

"Complex" specifications

Logic/temporal specifications

- **Stay**: trajectories start in the target set Z and remain in Z.
- **Reach**: trajectories enter the target set Z in finite time.
- Reach and Stay: trajectories enter the target set Z in finite time and remain within Z thereafter.
- Reach and Stay while Stay: trajectories enter the target set Z in finite time and remain within Z thereafter while always remaining within the constraint set W.

Language specifications

- A word is a finite sequence of "output" symbols (it may encode a sampled trajectory)
- A language is a collection of words (it may encode good trajectories)

Language specifications

- Consider a collection Y of left-closed right-open hyper-cubes Y_i of \mathbb{R}^n
- We consider a specification expressed as a language L₀
- **Example** Starting from I reach T in finite time while avoiding O

 2η

C_i

Yi

Language specifications

- Consider a collection Y of left-closed right-open hyper-cubes Y_i of \mathbb{R}^n
- We consider a specification expressed as a language L_Q
- **Example** Starting from I reach T in finite time while avoiding O

2n

C_i

Yi

Language specifications

- Consider a collection Y of left-closed right-open hyper-cubes Y_i of \mathbb{R}^n
- We consider a specification expressed as a language L_Q
- **Example** Starting from I reach T in finite time while avoiding O

 L_Q = collection of words starting with \square , ending with \blacksquare and with no \blacksquare

2n

C_i

Yi

Logic specifications expressed by finite state machines

Finite state machines also encode logic and language specifications

Purely discrete systems: finite state machines or automata

Slot machine

- 1. Insert coin
- 2. Pull handle
- 3. Win if the combination is good, otherwise lose

Features: events may be time-abstract, possible non-determinism

L'Aquila, Jan 28, 2020

BEA-SmarT Workshop

Symbolic domain Physical domain

L'Aquila, Jan 28, 2020

BEA-SmarT Workshop

#1. Construct the finite/symbolic model T approximating the plant system P

L'Aquila, Jan 28, 2020

#1. Construct the finite/symbolic model T approximating the plant system P#2. Design a finite/symbolic controller C that solves the specification S for T

L'Aquila, Jan 28, 2020

#1. Construct the finite/symbolic model T approximating the plant system P#2. Design a finite/symbolic controller C that solves the specification S for T#3. Refine the controller C to the controller C' to be applied to P

Correct-by-design embedded control software synthesis

L'Aquila, Jan 28, 2020

BEA-SmarT Workshop

#1. Construct the finite/symbolic model T approximating the plant system P#2. Design a finite/symbolic controller C that solves the specification S for T#3. Refine the controller C to the controller C' to be applied to P

- Integration of SW/HW constraints in the control design of continuous processes
- Logic specifications can be addressed

L'Aquila, Jan 28, 2020

A unified framework for continuous and discrete systems

s Cipsi

Definition A transition system is a tuple:

 $T = (X, X_0, L, \longrightarrow, X_m, Y, H),$

consisting of:

- a set of states X
- a set of initial states X₀ ⊆ X
- a set of inputs L
- a transition relation $\longrightarrow \subseteq X \times L \times X$
- a set of marked states X_m ⊆ X
- a set of outputs Y
- an output function $H: X \rightarrow Y$

T is said countable if X and L are countable sets T is said symbolic/finite if X and L are finite sets T is metric if the output set is equipped with a metric

We will follow standard practice and denote $(x, l, x') \in \longrightarrow$ by $x \stackrel{l}{\longrightarrow} x'$

L'Aquila, Jan 28, 2020

A unified framework for continuous and discrete systems

A nonlinear control system $\boldsymbol{\Sigma}$

 $dx/dt = f(x,u), x \in X \subseteq R^n, u \in U \subseteq R^m$

can be modeled by the transition system

$$\mathsf{T}(\Sigma) = (\mathsf{X}, \mathsf{X}_0, \mathcal{U}, \longrightarrow, \mathsf{X}_m, \mathsf{Y}, \mathsf{H}),$$

where:

- X₀=X
- \mathcal{U} is the collection of control signals $u : R \rightarrow U$
- $p \xrightarrow{u} q$, if $x(\tau, p, u) = q$ for some $\tau \ge 0$
- X_m=X
- Y = X
- H is the identity function

 $T(\Sigma)$ captures the information contained in Σ but it is not a symbolic model because X and U are infinite sets!

[Milner & Park, 1981]

Given $T_1 = (X_1, X_{01}, L_1, \longrightarrow_1, X_{m1}, Y_1, H_1)$ and $T_2 = (X_2, X_{02}, L_2, \longrightarrow_2, X_{m2}, Y_2, H_2)$ with $Y_1 = Y_2$, a relation

 $\mathsf{R} \subseteq \mathsf{X}_1 \times \mathsf{X}_2$

is a *simulation relation* from T_1 to T_2 if

- $\forall x_1 \in X_{01}, \exists x_2 \in X_{02} \text{ s.t. } (x_1, x_2) \in R$
- $\forall \mathbf{x}_1 \in \mathbf{X}_{m1}, \exists \mathbf{x}_2 \in \mathbf{X}_{m2} \text{ s.t. } (\mathbf{x}_1, \mathbf{x}_2) \in \mathbf{R}$
- $\forall (x_1, x_2) \in R, H_1(x_1) = H_2(x_2)$
- $\forall (x_1, x_2) \in \mathbb{R}$, if $x_1 \xrightarrow{I_1} p_1$ then there exists $x_2 \xrightarrow{I_2} p_2$ such that $(p_1, p_2) \in \mathbb{R}$

Transition system T_1 is *simulated* by $T_2 (T_1 \preccurlyeq T_2)$ if there exists a *simulation relation* from T_1 to T_2

[Milner & Park, 1981]

Given $T_1 = (X_1, X_{01}, L_1, \longrightarrow_1, X_{m1}, Y_1, H_1)$ and $T_2 = (X_2, X_{02}, L_2, \longrightarrow_2, X_{m2}, Y_2, H_2)$ with $Y_1 = Y_2$, a relation

 $\mathsf{R} \subseteq \mathsf{X}_1 \times \mathsf{X}_2$

is a *simulation relation* from T_1 to T_2 if

- $\forall x_1 \in X_{01}, \exists x_2 \in X_{02} \text{ s.t. } (x_1, x_2) \in R$
- $\forall \mathbf{x}_1 \in \mathbf{X}_{m1}, \exists \mathbf{x}_2 \in \mathbf{X}_{m2} \text{ s.t. } (\mathbf{x}_1, \mathbf{x}_2) \in \mathbf{R}$
- $\forall (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}, \ \mathbf{H}_1(\mathbf{x}_1) = \mathbf{H}_2(\mathbf{x}_2)$
- $\forall (x_1, x_2) \in \mathbb{R}$, if $x_1 \xrightarrow{l_1} p_1$ then there exists $x_2 \xrightarrow{l_2} p_2$ such that $(p_1, p_2) \in \mathbb{R}$

Transition system T_1 is *simulated* by $T_2 (T_1 \leq T_2)$ if there exists a *simulation relation* from T_1 to T_2

Note that T_2 is **not** simulated by T_1 !

[*Milner & Park, 1981*]

Given $T_1 = (X_1, X_{01}, L_1, \longrightarrow_1, X_{m1}, Y_1, H_1)$ and $T_2 = (X_2, X_{02}, L_2, \longrightarrow_2, X_{m2}, Y_2, H_2)$ with $Y_1 = Y_2$, a relation

 $\mathbf{R} \subseteq \mathbf{X}_1 \times \mathbf{X}_2$

is a *simulation relation* from T₁ to T₂ if

- $\forall x_1 \in X_{01}, \exists x_2 \in X_{02} \text{ s.t. } (x_1, x_2) \in \mathbb{R}$
- $\forall \mathbf{x}_1 \in \mathbf{X}_{m1}, \exists \mathbf{x}_2 \in \mathbf{X}_{m2} \text{ s.t. } (\mathbf{x}_1, \mathbf{x}_2) \in \mathbf{R}$
- ∀(x₁, x₂)∈R, H₁(x₁) = H₂(x₂)
 ∀(x₁, x₂)∈R, if x₁ → 1 p₁ then there exists

 $x_2 \xrightarrow{I_2} p_2$ such that $(p_1, p_2) \in R$

R is a **bisimulation relation** between T_1 and T_2 if

- R is a simulation relation from T_1 to T_2
- R^{-1} is a simulation relation from T_2 to T_1

[*Milner & Park, 1981*]

Given $T_1 = (X_1, X_{01}, L_1, \longrightarrow_1, X_{m1}, Y_1, H_1)$ and $T_2 = (X_2, X_{02}, L_2, \longrightarrow_2, X_{m2}, Y_2, H_2)$ with $Y_1 = Y_2$, a relation

 $\mathbf{R} \subseteq \mathbf{X}_1 \times \mathbf{X}_2$

is a *simulation relation* from T₁ to T₂ if

- $\forall x_1 \in X_{01}, \exists x_2 \in X_{02} \text{ s.t. } (x_1, x_2) \in \mathbb{R}$
- $\forall \mathbf{x}_1 \in \mathbf{X}_{m1}, \exists \mathbf{x}_2 \in \mathbf{X}_{m2} \text{ s.t. } (\mathbf{x}_1, \mathbf{x}_2) \in \mathbf{R}$
- ∀(x₁, x₂)∈R, H₁(x₁) = H₂(x₂)
 ∀(x₁, x₂)∈R, if x₁ → 1 p₁ then there exists

 $x_2 \xrightarrow{I_2} p_2$ such that $(p_1, p_2) \in R$

Transition systems T_1 and T_2 are *bisimilar* (denoted by $T_1 \cong T_2$) if there exists a *bisimulation relation* between T_1 and T_2

Approximate equivalence notions

[Girard & Pappas, 2007] "A bridge between computer science and control theory" Given $T_1 = (X_1, X_{01}, L_1, \longrightarrow_1, X_{m1}, Y_1, H_1)$ and $T_2 = (X_2, X_{02}, L_2, \longrightarrow_2, X_{m2}, Y_2, H_2)$ with $Y_1 = Y_2$ and metric d, and an accuracy $\varepsilon > 0$, a relation

 $\mathsf{R} \subseteq \mathsf{X}_1 \times \mathsf{X}_2$

is a ϵ -simulation relation from T_1 to T_2 if

- $\forall x_1 \in X_{01}, \exists x_2 \in X_{02} \text{ s.t. } (x_1, x_2) \in \mathbb{R}$
- $\forall \mathbf{x}_1 \in \mathbf{X}_{m1}, \exists \mathbf{x}_2 \in \mathbf{X}_{m2} \text{ s.t. } (\mathbf{x}_1, \mathbf{x}_2) \in \mathbf{R}$
- $\forall (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}, \mathbf{d}(\mathbf{H}_1(\mathbf{q}_1), \mathbf{H}_2(\mathbf{q}_2)) \leq \varepsilon$
- $\forall (x_1, x_2) \in \mathbb{R}$, if $x_1 \xrightarrow{I_1} p_1$ then there exists

 $x_2 \xrightarrow{I_2} p_2$ such that $(p_1, p_2) \in R$

R is an ε - bisimulation relation between T₁ and T₂ if

- R is an ε -simulation relation from T₁ to T₂
- R^{-1} is an ε -simulation relation from T_2 to T_1

Approximate equivalence notions

[Girard & Pappas, 2007] "A bridge between computer science and control theory" Given $T_1 = (X_1, X_{01}, L_1, \longrightarrow_1, X_{m1}, Y_1, H_1)$ and $T_2 = (X_2, X_{02}, L_2, \longrightarrow_2, X_{m2}, Y_2, H_2)$ with $Y_1 = Y_2$ and metric d, and an accuracy $\varepsilon > 0$, a relation

 $R \subseteq X_1 \times X_2$

is a ϵ -simulation relation from T_1 to T_2 if

- $\forall x_1 \in X_{01}, \exists x_2 \in X_{02} \text{ s.t. } (x_1, x_2) \in \mathbb{R}$
- $\forall \mathbf{x}_1 \in \mathbf{X}_{m1}, \exists \mathbf{x}_2 \in \mathbf{X}_{m2} \text{ s.t. } (\mathbf{x}_1, \mathbf{x}_2) \in \mathbf{R}$
- $\forall (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}, \frac{d(\mathbf{H}_1(\mathbf{q}_1), \mathbf{H}_2(\mathbf{q}_2)) \leq \varepsilon}{\varepsilon}$
- $\forall (x_1, x_2) \in \mathbb{R}$, if $x_1 \xrightarrow{I_1} p_1$ then there exists

 $x_2 \xrightarrow{I_2} p_2$ such that $(p_1, p_2) \in R$

Transition systems T_1 and T_2 are ε -bisimilar (denoted by $T_1 \cong \varepsilon T_2$) if there exists an ε -bisimulation relation between T_1 and T_2

Construction of symbolic models

We consider <u>digital control systems</u>, i.e. control systems where input signals are piecewise constant.

Consider a nonlinear digital control system

 $\mathsf{T}(\Sigma) = (\mathsf{X}, \mathsf{X}_0, \mathcal{U}, \longrightarrow, \mathsf{X}_m, \mathsf{O}, \mathsf{H}),$

and given some $\tau > 0$, define the transition system

$$\mathsf{T}_{\tau}(\Sigma) = (\mathsf{X}, \mathsf{X}_{0}, \mathcal{U}_{\tau}, \longrightarrow_{\tau}, \mathsf{Xm}, \mathsf{O}, \mathsf{H}),$$

where:

- \mathcal{U}_{τ} is the collection of <u>constant input functions</u> $u : [0, \tau] \rightarrow \mathbb{R}^{m}$
- $p \xrightarrow{u}_{\tau} q$ if $x(\tau, p, u) = q$

Construction of symbolic models

Consider the following parameters:

- $\tau > 0$ sampling time
- η > 0 state space quantization
- µ > 0 input space quantization

Construction of symbolic models

Consider the following parameters:

- $\tau > 0$ sampling time
- η > 0 state space quantization
- µ > 0 input space quantization

and define $T_{\tau,\eta,\mu}(\Sigma) = (X_{\tau,\eta,\mu}, X_{0,\tau,\eta,\mu}, U_{\tau,\eta,\mu}, \longrightarrow_{\tau,\eta,\mu}, X_{m,\tau,\eta,\mu}, O, H)$

Theorem If Σ is δ-ISS, for any desired accuracy ε > 0 and for any τ, η, μ > 0 satisfying $\beta(\varepsilon, \tau) + \eta + \gamma(\mu) \le \varepsilon$

then $T_{\tau}(\Sigma)$ and $T_{\tau,\eta,\mu}(\Sigma)$ are ϵ -bisimilar

Pola et al. (Automatica 2008) *Approximately bisimilar symbolic models for nonlinear control systems*

Incremental stability

The δ -ISS property (incremental input-to-state stability) is a fairly strong assumption, but it enables the construction of deterministic symbolic models.

$$|\mathbf{x}(\mathbf{t},\mathbf{y},\mathbf{u}) - \mathbf{x}(\mathbf{t},\mathbf{z},\mathbf{v})| \leq \beta(|\mathbf{y} - \mathbf{z}|, \mathbf{t}) + \gamma(|\mathbf{u} - \mathbf{v}|)$$

L'Aquila, Jan 28, 2020

BEA-SmarT Workshop

We remove the stability assumption...

We remove the stability assumption...

We remove the stability assumption...

2η

We remove the stability assumption...

We remove the stability assumption...

2n

... translating instability into nondeterminism in the symbolic model!

2η

We remove the stability assumption...

Zamani, Pola, et al. (TAC 2012) Symbolic models for nonlinear control systems without stability assumptions.

Spline approximation of functional spaces

Approximation error:

 $\Lambda (N, \theta, M) = h^2 M / 8 + (N+2)\theta$

where

- N is the number of time samples
- M is the infinity-norm bound on the second derivative
- θ is the space quantization

Lemma 1: For any λ , M, there always exist N and θ s.t. $\Lambda(N, \theta, M) \le \lambda$

Lemma 2: If the original functions are bounded, the set of approximating functions is symbolic (finite).

Design of symbolic controllers

Problem: Specifications given as deterministic transition systems

Given a plant P, a deterministic specification Q and a desired accuracy $\varepsilon > 0$, find a symbolic controller that implements Q up to the accuracy ε and that is alive when interacting with P.

Design of symbolic controllers

Control problem

Given a plant P, a deterministic specification Q and a desired accuracy $\epsilon > 0$, find a symbolic controller C such that

1.T_τ(P)||_θC ≼_ε Q 2.T_τ(P)||_θC is alive

Approximate composition

 \rightarrow 2, Q_{m2},O₂,H₂), with O₁ = O₂, and an accuracy θ > 0, the approximate composition of T_1 and T_2 is the system

 $T = T_1 ||_{\Theta} T_2 = (Q, Q_0, L = L_1 \times L_2, \longrightarrow, Q_m, O = O_1, H)$

where:

•
$$Q = \{(q_1, q_2) \in Q_1 \times Q_2: d(H_1(q_1), H_2(q_2)) \le \theta\}$$

•
$$Q_0 = Q_{(1)}(Q_{01} \times Q_{02})$$

•
$$(q_1,q_2) \xrightarrow{(I_1,I_2)} (p_1,p_2)$$
, if $q_1 \xrightarrow{I_1} p_1$ and $q_2 \xrightarrow{I_2} p_2$

•
$$Q_m = Q \cap (Q_{m1} \times Q_{m2})$$

•
$$H(q_1,q_2) = H_1(q_1)$$

Design of symbolic controllers

Synthesis through a three-step process:

- 1. Compute the symbolic model $T_{\tau,\eta,\mu}(P)$ of P
- 2. Compute the symbolic controller $C^* = T_{\tau,\eta,\mu}(P) ||_{\eta} Q$
- 3. Compute the alive part Alive(C*) of C*

Design of symbolic controllers

Synthesis through a three-step process:

- 1. Compute the symbolic model $T_{\tau,\eta,\mu}(P)$ of P
- 2. Compute the symbolic controller $C^* = T_{\tau,\eta,\mu}(P) ||_{\eta} Q$
- 3. Compute the alive part Alive(C*) of C*

Theorem Suppose that P is δ -ISS and choose parameters τ , η , μ , θ > 0 satisfying:

 $\beta(\theta,\tau) + \gamma(\mu) + 2\eta \le \theta + \eta \le \varepsilon$

Then the symbolic controller $Alive(C^*)$ solves the control problem.

G. Pola, A. Borri, and M. D. Di Benedetto (IEEE TAC 2012)

L'Aquila, Jan 28, 2020

BEA-SmarT Workshop

Integrated control design

Basic ideas

- 1. It only considers the intersection of the accessible parts of P and Q
- For any given source state x and target state y, it considers only one transition (x,u,y)
- 3. It eliminates blocking states as soon as they show up

G. Pola, A. Borri, and M. D. Di Benedetto (IEEE TAC 2012)

Possibly unstable time-delay systems (TDS) in the form

 $\dot{x}(t) = f(x_t, u(t-r))$ $y(t) = [z(t)]_{\lambda}$

- Incremental forward completeness (δ -FC) assumption on the TDS
- Quantized output and possibly delayed input (actuation lag)
- The δ -FC property can be checked by resorting to Lyapunov–Krasovskii-like functionals and related inequalities
- Symbolic models for TDS embedding symbolic approximations of the functional state space
- Strong alternating λ-approximate (AλA) simulation relation (Borri et al., IEEE TAC 2019) ensures robustness with respect to the non-determinism and enables refinement

Possibly unstable time-delay systems (TDS) in the form

 $\dot{x}(t) = f(x_t, u(t-r))$ $y(t) = [z(t)]_{\lambda}$

Main result (adapted) [Pola et al., ECC 2019]

Conditions:

- the TDS is δ -FC, with bounded state space X
- the functional *f* is Fréchet-differentiable, with Fréchet differential being continuous and bounded on bounded sets, so that a bound M is well defined
- for any λ , pick N and θ s.t. $\Lambda(N, \theta, M) \leq \lambda$

Then it is possible to build a symbolic model which approximates the original TDS in the sense of strong A λ A simulation, where the approximation parameter λ can be made arbitrarily small (which affects complexity).

Symbolic glucose control (2D model)

- Sampling time: $\tau = 15$ min
- Output quantization: 0.1 mM
- Reach in finite time (3h) and stay in a safe zone (between mild hypo- and mild hyperglycemia)

G. Pola, A. Borri, P. Pepe, P. Palumbo, M.D. Di Benedetto, *Symbolic models approximating possibly unstable time–delay systems with application to the artificial pancreas*, European Control Conference (ECC 2019).

Symbolic glucose control (2D model)

G. Pola, A. Borri, P. Pepe, P. Palumbo, M.D. Di Benedetto, ECC 19

L'Aquila, Jan 28, 2020

BEA-SmarT Workshop

Ongoing work: Synchronization specifications

Considering the effect of meals and explicit (quantitative) time specifications

TABLE I

CONTROL TARGETS

Target	Range $[mM]$
Very good fasting glycemia	$3.9 \le G(t) < 5.6$
Good fasting glycemia	$5.6 \le G(t) < 6.5$
Satisfactory pre-prandial state	$4.4 \le G(t) < 7.2$
Very good post-prandial (2 hours after meal) state	G(t) < 7.8
Good post-prandial (2 hours after meal) state	$7.8 \le G(t) < 10$

Targets established according to current clinical practice recommendations and guidelines of the American Diabetes Association (ADA) for the diabetes care and treatment.

Ongoing work: meals + subcutaneous compartment

Symbolic glucose control (4D model)

- Sampling time: $\tau = 15$ min
- Output quantization: 0.1 mM
- Takes into account the subcutaneous compartment
- **Higher settling time** (more realistic)

Symbolic glucose control (4D model)

- Lower infusion rate, applied for longer time
- The 2D model-based control law would lead the 4D system into hypo

Discussion

Ongoing/related work and future developments

- Meal uncertainties
- Big glucose interactions among (most of the) players involved in glucose metabolism and homeostasis
- Modeling physical activity
- Validation on maximal models
- Long-term evolution of diabetes
- Ultra-rapid insulins
- Population models

