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AP control loop 

L’Aquila, May 30, 2019 BEA-SmarT event 

it delivers continuous subcutaneous insulin therapy 

https://en.wikipedia.org/wiki/Subcutaneous_tissue
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Single-delay model 

𝑑𝐺(𝑡)

𝑑𝑡
= −𝑘𝑥𝑔𝑖G t I(t) +

𝑇𝑔ℎ

𝑉𝐺
 

𝜑 𝑥 =

𝑥
𝐺∗

𝛾

1 +
𝑥
𝐺∗

𝛾 𝐺 𝑡 = 𝐺𝑏   ∀𝑡 < 0 

𝐺 0 = 𝐺𝑏 + 𝐺Δ   

𝐼 𝑡 = 𝐼𝑏   ∀𝑡 < 0 

𝐼 0 = 𝐼𝑏 + 𝐼ΔG𝐺Δ   

Init conditions 

Glycemia [mM] 

Insulinemia [pM] 

Equilibrium constraints:  𝑇𝑔ℎ = 𝑘𝑥𝑔𝑖𝐺𝑏𝐼𝑏𝑉𝑔 𝑇𝑖𝐺𝑚𝑎𝑥 = 𝑘𝑥𝑖𝐼𝑏𝑉𝑖 

Model equations       Adapted from Panunzi et al. (2007), Palumbo et al. (2007) 
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𝑑𝐼(𝑡)

𝑑𝑡
= −𝑘𝑥𝑖I t +

𝑇𝑖𝐺𝑚𝑎𝑥

𝑉𝐼
𝜑 𝐺 𝑡 − 𝜏𝑔 + 𝑢(𝑡) 

Insulin input 
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Challenges 

• From a control-theoretic viewpoint, insulin is a non-negative input 

• Food as a source of uncertainty 

• Random variations (hormones, stress, physical activity…) 

• The subcutaneous compartment introduces filtering/delay effects 

• I/O sampling and quantization 

• Actuation lags 

 

 

Challenges in glucose 
regulation via insulin 
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Targets established according to current clinical practice recommendations 
and guidelines of the American Diabetes Association (ADA) for the diabetes 
care and treatment. 

Time-varying control targets 
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«Classical» nonlinear state/output feedback control: 
• (semiglobal, practical) stabilization can be imposed, but 

the other guarantees need to be «a-posteriori» checked 
 
How to deal systematically with: 
• complex specifications? 
• positive inputs? 
• (possibly given) quantization parameters (CGM sampling 

time, insulin units) and non-idealities arising in a digital 
environment? 

 
A possible answer: formal methods. 

Control based on SDM 
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Formal Methods in Control 

• Formal methods are mathematically based techniques for the specification, 

development and verification of software and hardware systems 

• Mathematical analysis contributes to the reliability and robustness of a design 

• Combination of discrete, continuous, heterogeneous and distributed systems 

xdtdx / uxdtdx /

19x21x
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Modern systems are characterized by tight interaction of many distributed, real-time 

computing systems and physical systems  

(the so-called Cyber-Physical Systems, CPS) 
  

Examples: Airplanes, cars, buildings with advanced HVAC controls,  

                   manufacturing plants, power plants  

 
• Computational systems, but not stand alone computers, 

interfacing sensors and actuators, reactive to physical 

environment stimuli, designed to perform one or a few 

dedicated functions, often with real-time computing 

constraints. 

• Coordination between physical process and 

computing/communication components. 

A. Borri (2011):  Hybrid Control of Cyber-Physical Systems, PhD Thesis 

Formal Methods in Control 
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Features of Cyber-Medical Systems (CMS)           L. Kovács (2017)  

• Mathematical algorithms able to be personalized on the patients’ need and 
physiology 

• Control engineering methods and real-time computation to fasten and 
intensify a “knowledge-based” intelligent decision support 

• Artificial Intelligence and big data analysis for feature extraction 
 

Artificial Pancreas is a CMS involving technological advances in diabetes 
treatment: 

– Continuous Glucose Monitors (CGMs)  

– Insulin pumps  
 

Formal methods: a tool to tame the complexity of CPS and to deal with logic 
requirements and complex specifications.  

 

CPS for healthcare:  
Cyber-Medical Systems 
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Logic/temporal specifications 

 Stay: trajectories start in the target set Z and remain in Z.  

 Reach: trajectories enter the target set Z in finite time.  

 Reach and Stay: trajectories enter the target set Z in finite time and remain 
within Z thereafter. 

 Reach and Stay while Stay: trajectories enter the target set Z in finite time 
and remain within Z thereafter while always remaining within the 
constraint set W.  

Language specifications 

• A word is a finite sequence of “output” symbols (it may encode a sampled 
trajectory) 

• A language is a collection of words (it may encode good trajectories) 

 

 

“Complex” specifications 
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Example Starting from I  reach T  in finite time while avoiding 𝑂 
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   Language specifications 

• Consider a collection Y of left-closed right-open  
     hyper-cubes Yi of ℝ𝑛 
• We consider a specification expressed as a language LQ 

L’Aquila, Jan 28, 2020 BEA-SmarT Workshop  



Alessandro Borri 

Example Starting from I  reach T  in finite time while avoiding 𝑂 

 

 

 

 

 

 

 

 
 

 

 

 

 

I 

T 
O 

 

 

 

    

ci 

2 

2 

Yi 

   Language specifications 

• Consider a collection Y of left-closed right-open  
     hyper-cubes Yi of ℝ𝑛 
• We consider a specification expressed as a language LQ 

L’Aquila, Jan 28, 2020 BEA-SmarT Workshop  



Alessandro Borri 

Example Starting from I  reach T  in finite time while avoiding 𝑂 

 

 

 

 

 

 

 

 
 

𝐿𝑄 = collection of words starting with     , ending with      and with no   
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     hyper-cubes Yi of ℝ𝑛 
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Specification 

y 

u 

x 

Process Controller 

y dx/dt=f(x,m) 

Finite state machines also 

encode logic and 

language specifications  

Logic specifications expressed by 
finite state machines 
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1. Insert coin 

2. Pull handle 

3. Win if the combination is good, otherwise 

lose 

coin 

win 

lose 

Features: events may be time-abstract, possible non-determinism 

Purely discrete systems: finite 
state machines or automata  

7 7 7 7 7 

Slot machine 
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Symbolic domain 

Physical domain 

  Control based on formal methods 
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#1. Construct the finite/symbolic model T approximating the plant system P 
 

 
 

Symbolic domain 

Physical domain 

Plant: Continuous  
or Hybrid system 

Symbolic model 

  Control based on formal methods 
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#1. Construct the finite/symbolic model T approximating the plant system P 
#2. Design a finite/symbolic controller C that solves the specification S for T 
 

 
 

Symbolic domain 

Physical domain 

Plant: Continuous  
or Hybrid system 

Symbolic model Finite controller Software & hardware 

  Control based on formal methods 
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#1. Construct the finite/symbolic model T approximating the plant system P 
#2. Design a finite/symbolic controller C that solves the specification S for T 
#3. Refine the controller C to the controller C’ to be applied to P  

 
 
 
 
 
 
 
 

 
 
 

 
 

Symbolic domain 

Physical domain 

Plant: Continuous  
or Hybrid system 

Symbolic model Finite controller Software & hardware 

Hybrid controller 

Correct-by-design embedded control software synthesis 

  Control based on formal methods 
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#1. Construct the finite/symbolic model T approximating the plant system P 
#2. Design a finite/symbolic controller C that solves the specification S for T 
#3. Refine the controller C to the controller C’ to be applied to P  

 
 
 
 
 
 
 
 

 
 

 Integration of SW/HW constraints in the control design of continuous processes 

 Logic specifications can be addressed 
 

 
 

Symbolic domain 

Physical domain 

Plant: Continuous  
or Hybrid system 

Symbolic model Finite controller Software & hardware 

Hybrid controller 

  Control based on formal methods 

L’Aquila, Jan 28, 2020 BEA-SmarT Workshop  



Alessandro Borri 

 
Definition A transition system is a tuple:  
 
  T = (X, X0,L, , Xm,Y,H), 
 
consisting of: 
 a set of states X 
 a set of initial states X0  X 
 a set of inputs L  
 a transition relation   X × L × X 
 a set of marked states Xm  X 
 a set of outputs Y 
 an output function H: X  Y  
 
T is said countable if X and L are countable sets 
T is said symbolic/finite if X and L are finite sets 
T is metric if the output set is equipped with a metric   
 
We will follow standard practice and denote (x, l, x’)    by   x  x’ 

A unified framework for continuous 
and discrete systems 

l 

x1 

x2 
x3 

x4 

x5 

l1 
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A nonlinear control system  
 

       dx/dt = f(x,u), x  X  Rn, u  U  Rm                            
 

can be modeled by the transition system 
 

  T() = (X,X0,U , ,Xm,Y,H), 
 

where: 
 
 X0=X 

 U is the collection of control signals u : R  U 
 p  q, if x(,p,u) = q for some   0  
 Xm=X 
 Y = X 

 H is the identity function 
 
 
 
T() captures the information contained in  but it is not a symbolic model because  
X and U are infinite sets! 

p 
q = x(,p,u) 

 q  p 
u 

u 

A unified framework for continuous 
and discrete systems 
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[Milner & Park, 1981]  
Given T1 = (X1, X01, L1,1, Xm1,Y1,H1) and T2 = (X2, X02, L2,2, Xm2,Y2,H2) with  
Y1 = Y2, a relation  
 

    R  X1 × X2  
 

is a simulation relation from T1 to T2 if 
 

 x1  X01,  x2 X02  s.t. (x1, x2)  R 
 x1  Xm1,  x2 Xm2  s.t. (x1, x2)  R 
 (x1, x2)R, H1(x1) = H2(x2) 
 (x1, x2)R, if x1 1 p1 then there exists   
 

 x2 2 p2 such that (p1, p2)  R 
 
  

l2 

Exact equivalence notions 

e 

y1 

y3 

l 

g d 

f 

y2 

y2 

l l 

l 

T1 

b 

y1 y3 
l c a 

y2 

l 

T2 
 

Transition system T1 is simulated by T2 (T1 ≼T2)  

 if there exists a simulation relation from T1 to T2 
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[Milner & Park, 1981]  
Given T1 = (X1, X01, L1,1, Xm1,Y1,H1) and T2 = (X2, X02, L2,2, Xm2,Y2,H2) with  
Y1 = Y2, a relation  
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 (x1, x2)R, if x1 1 p1 then there exists   
 

 x2 2 p2 such that (p1, p2)  R 
 
  

l2 
e 

y1 

y3 

l 

g d 
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l l 
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y1 y3 
l c a 

y2 
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Transition system T1 is simulated by T2 (T1 ≼T2)  

 if there exists a simulation relation from T1 to T2 
 

 

Note that T2 is not simulated by T1!   

Exact equivalence notions 
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[Milner & Park, 1981]  
Given T1 = (X1, X01, L1,1, Xm1,Y1,H1) and T2 = (X2, X02, L2,2, Xm2,Y2,H2) with  
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 (x1, x2)R, if x1 1 p1 then there exists   
 

 x2 2 p2 such that (p1, p2)  R 
 
  

l2 
e 

y1 

y3 

l 

g d 

f 

y2 

y2 

l l 

l 

T1 

b 

y1 y3 
l c a 

y2 

l 

T2 

R is a bisimulation relation between T1 and T2 if 
 R is a simulation relation from T1 to T2 

 R−1 is a simulation relation from T2 to T1 

 

Exact equivalence notions 
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 (x1, x2)R, if x1 1 p1 then there exists   
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y1 
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y2 
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Transition systems T1 and T2  are bisimilar 
(denoted by T1 ≅T2)  

 if there exists a bisimulation relation 
between T1 and T2   

Exact equivalence notions 
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[Girard & Pappas, 2007] “A bridge between computer science and control theory” 
Given T1 = (X1, X01, L1,1, Xm1,Y1,H1) and T2 = (X2, X02, L2,2, Xm2,Y2,H2) with  
Y1 = Y2 and metric d, and an accuracy  > 0, a relation  
 

    R  X1 × X2  
 

is a -simulation relation from T1 to T2 if 
 

 x1  X01,  x2 X02  s.t. (x1, x2)  R 
 x1  Xm1,  x2 Xm2  s.t. (x1, x2)  R 
 (x1, x2)R, d(H1(q1),H2(q2)) ≤  
 (x1, x2)R, if x1 1 p1 then there exists   
 

 x2 2 p2 such that (p1, p2)  R 
 
  

l1 

l2 

Approximate equivalence notions 

R is an - bisimulation relation between T1 and T2 if 
 R is an -simulation relation from T1 to T2 

 R−1 is an -simulation relation from T2 to T1 
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[Girard & Pappas, 2007] “A bridge between computer science and control theory” 
Given T1 = (X1, X01, L1,1, Xm1,Y1,H1) and T2 = (X2, X02, L2,2, Xm2,Y2,H2) with  
Y1 = Y2 and metric d, and an accuracy  > 0, a relation  
 

    R  X1 × X2  
 

is a -simulation relation from T1 to T2 if 
 

 x1  X01,  x2 X02  s.t. (x1, x2)  R 
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 (x1, x2)R, d(H1(q1),H2(q2)) ≤  
 (x1, x2)R, if x1 1 p1 then there exists   
 

 x2 2 p2 such that (p1, p2)  R 
 
  

l1 

l2 

 

Transition systems T1 and T2  are -bisimilar 
(denoted by T1 ≅T2)  

 if there exists an -bisimulation relation 
between T1 and T2   

Approximate equivalence notions 
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We consider digital control systems, i.e. control systems where  
input signals are piecewise constant. 
 
Consider a nonlinear digital control system  
 

T() = (X,X0,U, , Xm,O,H), 
 

and given some  > 0, define the transition system  
 

T() = (X,X0,U, , Xm,O,H),  
 

where: 
 

 U  is the collection of constant input functions u : [0,]  Rm  
 p   q if x(,p,u) = q 

 
 

u 

Construction of symbolic models 
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Consider the following parameters: 
 
  > 0   sampling time 
  > 0   state space quantization 
   > 0  input space quantization 
 
and define T,,() = (X,,,X0,,,,U,,,  ,,, Xm,,,, O,H), where: 
 
 X,, = [X]2

 

 X0,,, = X,, X0
 

 U,, = [U]2  
 q  ,, p, if  |x(,q,u) – p|    
 Xm,,, = X,, Xm

 

 O = X 
 H is the identity function 

 

U 

u 

X 

 

 

q 

p 

x(,q,u)  

Construction of symbolic models 
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Consider the following parameters: 
 
  > 0   sampling time 
  > 0   state space quantization 
   > 0  input space quantization 
 
and define T,,() = (X,,,X0,,,,U,,,  ,,, Xm,,,, O,H) 

 

Theorem If  is -ISS, for any desired accuracy 

 > 0 and for any , ,  > 0 satisfying 
 

                    (,) +  + () ≤   
 

then T() and T,,() are -bisimilar 

Q 

U 

Construction of symbolic models 

Pola et al. (Automatica 2008) Approximately bisimilar  

symbolic models for nonlinear control systems 
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The -ISS property (incremental input-to-state stability) is a fairly strong 

assumption, but it enables the construction of deterministic symbolic 

models.   

 ≤ (|u-v|) 

t   

z 

y 

x(., z, v) 

x(., y, u) 

t 

| x(t,y,u) - x(t,z,v) |≤ (|y - z|, t) + (|u - v| )  

    Incremental stability 
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ξ 

2 

2 

𝑥 

    Dealing with unstable systems 

The -ISS property (incremental input-to-state stability) is a fairly strong 

assumption, but it enables the construction of deterministic symbolic 

models.   

We remove the stability assumption… 
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𝒙(𝑡, 𝜉, 𝑢) 

𝒙(𝑡, 𝑥, 𝑢)  

The -ISS property (incremental input-to-state stability) is a fairly strong 

assumption, but it enables the construction of deterministic symbolic 

models.   

We remove the stability assumption… 
 

 

 

 

    Dealing with unstable systems 
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2𝛽 𝜂, 𝑡  

𝒙(𝑡, 𝜉, 𝑢) 

𝒙(𝑡, 𝑥, 𝑢)  

The -ISS property (incremental input-to-state stability) is a fairly strong 

assumption, but it enables the construction of deterministic symbolic 

models.   

We remove the stability assumption… 
 

 

 

 

    Dealing with unstable systems 
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ξ 

2 

2 

2𝛽 𝜂, 𝑡  

2𝛽 𝜂, 𝑡  

𝜉1 𝜉2 
 

𝜉3 
 

𝜉4 
 

The -ISS property (incremental input-to-state stability) is a fairly strong 

assumption, but it enables the construction of deterministic symbolic 

models.   

We remove the stability assumption… 
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… translating instability into nondeterminism in the symbolic model! 

ξ 

2 

2 

2𝛽 𝜂, 𝑡  

2𝛽 𝜂, 𝑡  

𝜉1 𝜉2 
 

𝜉3 
 

𝜉4 
 

The -ISS property (incremental input-to-state stability) is a fairly strong 

assumption, but it enables the construction of deterministic symbolic 

models.   

We remove the stability assumption… 
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The -ISS property (incremental input-to-state stability) is a fairly strong 

assumption, but it enables the construction of deterministic symbolic 

models.   

We remove the stability assumption… 
 

 

 

 

ξ 

2 

2 

2𝛽 𝜂, 𝑡  

2𝛽 𝜂, 𝑡  

𝜉1 𝜉2 
 

𝜉3 
 

𝜉4 
 

Zamani, Pola, et al. (TAC 2012) Symbolic models for nonlinear control systems without stability 

assumptions. 
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d 

d1 

d2 

t 

t 

t 

4𝜃 

2𝜃 

h 2h 4h 3h 5h τ 

h 2h 4h 3h 5h τ 0 

0 

0 

0 

τ 

Approximation error: 

 

𝛬 𝑁, 𝜃,𝑀 = ℎ2𝑀/8 + 𝑁 + 2 𝜃 

 

where 
 

 

 N is the number of time samples 

 M is the infinity-norm bound on the second 

derivative 

 𝜃 is the space quantization 
 

Lemma 1: For any , M, there always exist N and 𝜃 

s.t. 𝛬 𝑁, 𝜃,𝑀 ≤ 𝜆 

 

Lemma 2: If the original functions are bounded, the 

set of approximating functions is symbolic (finite).

     

   

Spline approximation of 
functional spaces 
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Problem: Specifications given as deterministic transition systems 

 

Given a plant P, a deterministic specification Q and a desired accuracy  > 0, find a 

symbolic controller that implements Q up to the accuracy  and that is alive when 

interacting with P. 

Design of symbolic controllers 

A/D 

D/A 

Symbolic 

Controller C 

xp 

  

 

u 

≼ 

,  

 

 y1 y3 

y2 

x1 
x2 x3 

Specification  

transition system Q: 
𝑥 𝑝 = 𝑓𝑝 (𝑥𝑝, 𝑢) 
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Control problem  

Given a plant P, a deterministic specification Q and a desired accuracy  > 0, find a 

symbolic controller C such that 
 

1.T(P)||θC ≼ Q  

2.T(P)||θC is alive 

A/D 

D/A 

Symbolic 

Controller C 

xp 

  

 

u 

≼ 

,  

 

 y1 y3 

y2 

x1 
x2 x3 

Specification  

transition system Q: 

Design of symbolic controllers 

𝑥 𝑝 = 𝑓𝑝 (𝑥𝑝, 𝑢) 
Plant  

system P 
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[Tabuada IEEE TAC 08] Given T1 = (Q1,Q01,L1, 1, Qm1,O1,H1) and T2 = (Q2,Q02,L2, 
2, Qm2,O2,H2), with O1 = O2, and an accuracy θ > 0, the approximate 
composition of T1 and T2 is the system  

     T = T1|| T2 = (Q,Q0,L=L1 x L2, , Qm,O = O1,H)   
 

where: 
 Q = {(q1, q2)Q1 x Q2: d(H1(q1),H2(q2)) ≤ θ} 
 Q0 = Q(Q01 x Q02) 
 

 (q1,q2)  (p1,p2), if q1 p1 and q2 p2 
 Qm = Q(Qm1 x Qm2) 
 H(q1,q2) = H1(q1) 

Approximate composition 

(l1,l2) l2 l1 

b 

o1 

o3 

la 

c 

a 

o2 T1 e 

o1 

o3 

f 

d 

o2 T2 b,e 

o1 

o3 

c,f 

a,d 

o2 T1||T2 

= la 

la 

la 

lb 

lb 
lb 

(la,lb) 

(la,lb) 
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Synthesis through a three-step process:  

1. Compute the symbolic model T,,(P) of P 

2. Compute the symbolic controller C* = T,,(P)||  Q  

3. Compute the alive part Alive(C*) of C* 

  
 
 

Plant  P: 

Continuous System 

Symbolic model   Finite Controller 

  Alive Controller 

 Specification Q 

Design of symbolic controllers 
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Then the symbolic controller Alive(C*) solves the control problem. 

Theorem Suppose that P is –ISS and choose parameters , , ,  > 0 

satisfying:  
 

       

    (,) + () + 2 ≤  +  ≤  

Synthesis through a three-step process:  

1. Compute the symbolic model T,,(P) of P 

2. Compute the symbolic controller C* = T,,(P)||  Q  

3. Compute the alive part Alive(C*) of C* 

  
 
 

Design of symbolic controllers 

G. Pola, A. Borri, and M. D. Di Benedetto (IEEE TAC 2012) 
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Integrated control design 

 

 

 
 

Basic ideas 

 

1. It only considers the intersection of the accessible parts of P and Q 

2. For any given source state x and target state y, it considers only one transition  

    (x,u,y) 

3. It eliminates blocking states as soon as they show up 

Plant  P: 

Continuous System 

Symbolic model   Finite Controller 

  Alive Controller 

 Specification Q 

G. Pola, A. Borri, and M. D. Di Benedetto (IEEE TAC 2012) 
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Possibly unstable time-delay systems (TDS) in the form 
 
 
  

 

• Incremental forward completeness (𝛿-FC) assumption on the TDS 

• Quantized output and possibly delayed input (actuation lag) 

• The 𝛿-FC property can be checked by resorting to Lyapunov–Krasovskii-like 
functionals and related inequalities 

• Symbolic models for TDS embedding symbolic approximations of the functional 
state space 

• Strong alternating  𝜆-approximate (A𝜆A) simulation relation (Borri et al., IEEE TAC 
2019) ensures robustness with respect to the non-determinism and enables 
refinement 

 

Extension to unstable TDS 

𝒚(𝒕) = 𝒛 𝒕 𝝀 

𝒙 𝒕 = 𝒇 𝒙𝒕, 𝒖 𝒕 − 𝒓  
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Possibly unstable time-delay systems (TDS) in the form 
 
 
  

 

Main result (adapted) [Pola et al., ECC 2019] 

Conditions: 

• the TDS is 𝛿-FC, with bounded state space X 

• the functional f is Fréchet-differentiable, with Fréchet differential being 
continuous and bounded on bounded sets, so that a bound M is well defined 

• for any , pick N and 𝜃 s.t.  𝛬 𝑁, 𝜃,𝑀 ≤ 𝜆 

Then it is possible to build a symbolic model which approximates the original TDS in 
the sense of strong A𝜆A simulation, where the approximation parameter 𝜆 can be 
made arbitrarily small (which affects complexity). 

 

𝒚(𝒕) = 𝒛 𝒕 𝝀 

𝒙 𝒕 = 𝒇 𝒙𝒕, 𝒖 𝒕 − 𝒓  

Extension to unstable TDS 
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G. Pola, A. Borri, P. Pepe, P. Palumbo, M.D. Di Benedetto, Symbolic models 
approximating possibly unstable time–delay systems with application to the artificial 
pancreas, European Control Conference (ECC 2019). 

Symbolic glucose control  
(2D model) 

• Sampling time: 𝜏 = 15 min 
• Output quantization: 0.1 mM 

 
• Reach in finite time (3h) and 

stay in a safe zone (between 
mild hypo- and mild hyper-
glycemia) 
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G. Pola, A. Borri, P. Pepe, P. Palumbo, M.D. Di Benedetto, ECC 19 
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(2D model) 
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Targets established according to current clinical practice recommendations 
and guidelines of the American Diabetes Association (ADA) for the diabetes 
care and treatment. 

Considering the effect of meals and explicit (quantitative) time 
specifications 

Ongoing work: 
Synchronization specifications 
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Ongoing work: 
meals + subcutaneous compartment 

Puckett et al. (1995) 
Hovorka et al. (2004) 

𝑑𝐺(𝑡)

𝑑𝑡
= −𝑘𝑥𝑔𝑖G t 𝐼(𝑡) +

𝑇𝑔ℎ

𝑉𝐺
+ d(t) 

𝑑𝐼(𝑡)

𝑑𝑡
= −𝑘𝑥𝑖I t +

𝑇𝑖𝐺𝑚𝑎𝑥

𝑉𝐼
𝜑 𝐺 𝑡 − 𝜏𝑔 +

𝑆2(𝑡)

𝑡𝑚𝑎𝑥,𝐼𝑉𝐼
 

𝑑𝑆2(𝑡)

𝑑𝑡
=

1

𝑡𝑚𝑎𝑥,𝐼
𝑆1 𝑡 −

1

𝑡𝑚𝑎𝑥,𝐼
𝑆2(𝑡) 

𝑑𝑆1(𝑡)

𝑑𝑡
= −

1

𝑡𝑚𝑎𝑥,𝐼
𝑆1 𝑡 + u(t) 

𝜑 𝑥 =

𝑥
𝐺∗

𝛾

1 +
𝑥
𝐺∗

𝛾 

Meal digestion model 

Subcutaneous compartment 

Magdelaine et al. (2015) 
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Symbolic glucose control  
(4D model) 

• Sampling time: 𝜏 = 15 min 
• Output quantization: 0.1 mM 

 
• Takes into account the 

subcutaneous compartment 
 

• Higher settling time (more 
realistic) 
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Symbolic glucose control  
(4D model) 

• Lower infusion rate, applied for longer time 
• The 2D model-based control law would lead the 4D system into hypo 
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Discussion 

Alessandro Borri 

Ongoing/related work and future developments 
 
• Meal uncertainties 
• Big glucose – interactions among (most of the) players involved 

in glucose metabolism and homeostasis 
• Modeling physical activity 
• Validation on maximal models 
• Long-term evolution of diabetes 
• Ultra-rapid insulins 
• Population models 
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